THE GROWTH KINETICS AND TOTAL LIPID CONTENT OF Thalassiosira sp. (BACILLARIOPHYCEAE) UNDER MIXOTROPHIC CONDITIONS

Kelee Ira Burgan Nodque, Cleresa Salido Dionela, Fredson Hervias Huervana, Rex Ferdinand Mallare Traifalgar

Abstract


Conventional microalgae culture is challenged by issues of light limitation and cell self-shading. This study aims to evaluate the impact of different cultivation modes on the growth and lipid content of Thalassiosira sp. The diatom, Thalassiosira sp., was grown in autotrophic, mixotrophic-suspended, and mixotrophic-biofilm conditions until the stationary phase was reached. After four (4) days of culture, analysis of the cell densities revealed a significant difference between groups, with cell densities of 7.3×105 cells mL-1 for control, 1.1×106 cells mL-1 for mixotrophic-suspended, and 1.9×106 cells mL-1 for mixotrophic-biofilm cultures. Both treatments are significantly higher than the control. However, mixotrophic-biofilm culture achieved the highest cell density among all cultivation modes, 161.81% higher than the control. The specific growth rate (SGR) of Thalassiosira sp. in mixotrophic-biofilm culture was highest among treatments, while the doubling time was significantly highest in the control. Moreover, mixotrophic-biofilm culture attained the highest biomass at 56 mg 100 mL-1. Thalassiosira sp. cultured under mixotrophic-biofilm also recorded the highest lipid content at 9.89%. It is both significantly higher than the control (3.06%) and the mixotrophic-suspended culture (6.15%). The cell density, algal biomass, and lipid content of Thalassiosira sp. under mixotrophic-biofilm culture highlight this culture strategy’s promising potential in improving microalgae growth and lipid content, ridding of light as an indispensable growth factor.

Keywords


biofilm; lipid content; mixotrophic growth; suspended culture; Thalassiosira

Full Text:

PDF

References


Abu Hasan, H., Abu Bakar, S. N. H., & Takriff, M. S. (2021). Chapter 12—Microalgae biofilms for the treatment of wastewater. In C. M.

Galanakis (Ed.), Microalgae (pp. 381–407). Academic Press. https://doi.org/10.1016/B978-0-12-821218-9.00012-8

Baldisserotto, C., Sabia, A., Guerrini, A., Demaria, S., Maglie, M., Ferroni, L., & Pancaldi, S. (2021). Mixotrophic cultivation of Thalassiosira pseudonana with pure and crude glycerol: Impact on lipid profile. Algal Research, 54, 102194. https://doi.org/10.1016/j.algal.2021.102194

Becker, W. (2004). 21 Microalgae for aquaculture. Handbook of Microalgal Culture: Biotechnology and Applied Phycology, 380.

Bhattacharya, S., & Shivaprakash, M. (2005). Evaluation of three Spirulina species grown under similar conditions for their growth and biochemicals. Journal of the Science of Food and Agriculture, 85(2), 333–336. https://doi.org/10.1002/jsfa.1998

Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911–917.

Brown, M. R. (2002). Nutritional value and use of microalgae in aquaculture. Avances En Nutricion Acuicola VI., 281–292. http://hdl.handle.net/102.100.100/199007?index=1

Cecchin, M., Benfatto, S., Griggio, F., Mori, A., Cazzaniga, S., Vitulo, N., Delledonne, M., & Ballottari, M. (2018). Molecular basis of autotrophic vs mixotrophic growth in Chlorella sorokiniana. Scientific Reports, 8(1), Article 1. https://doi.org/10.1038/s41598-018-24979-8

Cheirsilp, B., & Torpee, S. (2012). Enhanced growth and lipid production of microalgae under mixotrophic culture condition: Effect of light intensity, glucose concentration and fed-batch cultivation. Bioresource Technology, 110, 510–516. https://doi.org/10.1016/j.biortech.2012.01.125

Choi, H.-J., & Lee, S.-M. (2015). Biomass and oil content of microalgae under mixotrophic conditions. Environmental Engineering Research, 20(1), 25–32. https://doi.org/10.4491/eer.2014.043

D’Imporzano, G., Silvia, S., Davide, V., Barbara, S., & Fabrizio, A. (2017). Microalgae Mixotrophic Growth: Opportunity for Stream Depuration and Carbon Recovery. In B. N. Tripathi & D. Kumar (Eds.), Prospects and Challenges in Algal Biotechnology (pp. 141–177). Springer. https://doi.org/10.1007/978-981-10-1950-0_5

Guillard, R. R., & Ryther, J. H. (1962). Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. Canadian Journal of Microbiology, 8, 229–239. https://doi.org/10.1139/m62-029

Hamano, H., Nakamura, S., Hayakawa, J., Miyashita, H., & Harayama, S. (2017). Biofilm-based photobioreactor absorbing water and nutrients by capillary action. Bioresource Technology, 223, 307–311. https://doi.org/10.1016/j.biortech.2016.10.088

Huervana, F. H., Dionela, C. S., de la Torre, E. D. S., del Castillo, C. S., & Traifalgar, R. F. M. (2022). Utilization of marine diatom Thalassiosira weissflogii as a feed additive in seawater-tolerant Nile tilapia (Oreochromis niloticus, Linnaeus 1758) strain. Frontiers in Sustainable Food Systems, 6. https://www.frontiersin.org/articles/10.3389/fsufs.2022.1052951

Jannah, M., Ulkhaq, M. F., Azhar, M. H., Suciyono, & Soemarjati, dan W. (2019). Growth Performance of Laboratory-Scale Chaetoceros calcitrans in Different Containers. IOP Conference Series: Earth and Environmental Science, 236(1), 012031. https://doi.org/10.1088/1755-1315/236/1/012031

Kaspar, H. F., Keys, E. F., King, N., Smith, K. F., Kesarcodi-Watson, A., & Miller, M. R. (2014). Continuous production of Chaetoceros calcitrans in a system suitable for commercial hatcheries. Aquaculture, 420–421, 1–9. https://doi.org/10.1016/j.aquaculture.2013.10.021

Kong, W.-B., Yang, H., Cao, Y.-T., Song, H., Hua, S.-F., & Xia, C.-G. (2013). Effect of Glycerol and Glucose on the Enhancement of Biomass, Lipid and Soluble Carbohydrate Production by Chlorella vulgaris in Mixotrophic Culture. Food Technology and Biotechnology, 51(1), 62–69. https://www.proquest.com/docview/1436089238/abstract/C3F09DDC782349C9PQ/1

Li, S., Ji, L., Shi, Q., Wu, H., & Fan, J. (2019). Advances in the production of bioactive substances from marine unicellular microalgae Porphyridium spp. Bioresource Technology, 292, 122048. https://doi.org/10.1016/j.biortech.2019.122048

Li, Y.-R., Tsai, W.-T., Hsu, Y.-C., Xie, M.-Z., & Chen, J.-J. (2014). Comparison of Autotrophic and Mixotrophic Cultivation of Green Microalgal for Biodiesel Production. Energy Procedia, 52, 371–376. https://doi.org/10.1016/j.egypro.2014.07.088

Lin-Lan, Z., Jing-Han, W., & Hong-Ying, H. (2018). Differences between attached and suspended microalgal cells in ssPBR from the perspective of physiological properties. Journal of Photochemistry and Photobiology B: Biology, 181, 164–169. https://doi.org/10.1016/j.jphotobiol.2018.03.014

Meng, T. K., Kassim, M. A., & Cheirsilp, B. (2020). Chapter 4 - Mixotrophic Cultivation: Biomass and Biochemical Biosynthesis for Biofuel Production. In A. Yousuf (Ed.), Microalgae Cultivation for Biofuels Production (pp. 51–67). Academic Press. https://doi.org/10.1016/B978-0-12-817536-1.00004-7

Patwardhan, S. B., Pandit, S., Ghosh, D., Dhar, D. W., Banerjee, S., Joshi, S., Gupta, P. K., Lahiri, D., Nag, M., Ruokolainen, J., Ray, R. R., & Kumar Kesari, K. (2022). A concise review on the cultivation of microalgal biofilms for biofuel feedstock production. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-022-02783-9

Pereira, I., Rangel, A., Chagas, B., Moura, B. de, Urbano, S., Sassi, R., Camara, F., Castro, C., Pereira, I., Rangel, A., Chagas, B., Moura, B. de, Urbano, S., Sassi, R., Camara, F., & Castro, C. (2021). Microalgae Growth under Mixotrophic Condition Using Agro-Industrial Waste: A Review. In Biotechnological Applications of Biomass. IntechOpen. https://doi.org/10.5772/intechopen.93964

Ribeiro, D. M., Zanetti, G. T., Julião, M. H. M., Masetto, T. E., Gelinski, J. M. L. N., & Fonseca, G. G. (2019). Effect of different culture media on growth of Chlorella sorokiniana and the influence of microalgal effluents on the germination of lettuce seeds. Journal of Applied Biology and Biotechnology, 7(1), 6–10. https://doi.org/10.7324/JABB.2019.70102

Roostaei, J., Zhang, Y., Gopalakrishnan, K., & Ochocki, A. J. (2018). Mixotrophic Microalgae Biofilm: A Novel Algae Cultivation Strategy for Improved Productivity and Cost-efficiency of Biofuel Feedstock Production. Scientific Reports, 8(1), Article 1. https://doi.org/10.1038/s41598-018-31016-1

Schnurr, P. (2016). Understanding How Critical Growth Parameters Affect Algal Biofilm Growth and Internal Lipid Concentrations [Ph.D., University of Toronto (Canada)]. https://www.proquest.com/docview/1821428519/abstract/689A13BB9A9D42F9PQ/1

Shishlyannikov, S. M., Klimenkov, I. V., Bedoshvili, Y. D., Mikhailov, I. S., & Gorshkov, A. G. (2014). Effect of mixotrophic growth on the ultrastructure and fatty acid composition of the diatom Synedra acus from Lake Baikal. Journal of Biological Research-Thessaloniki, 21(1), 15. https://doi.org/10.1186/2241-5793-21-15

Su, M., D’Imporzano, G., Veronesi, D., Afric, S., & Adani, F. (2020). Phaeodactylum tricornutum cultivation under mixotrophic conditions with glycerol supplied with ultrafiltered digestate: A simple biorefinery approach recovering C and N. Journal of Biotechnology, 323, 73–81. https://doi.org/10.1016/j.jbiotec.2020.07.018

Villanova, V., Fortunato, A. E., Singh, D., Bo, D. D., Conte, M., Obata, T., Jouhet, J., Fernie, A. R., Marechal, E., Falciatore, A., Pagliardini, J., Le Monnier, A., Poolman, M., Curien, G., Petroutsos, D., & Finazzi, G. (2017). Investigating mixotrophic metabolism in the model diatom Phaeodactylum tricornutum. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1728), 20160404. https://doi.org/10.1098/rstb.2016.0404

Wan, M., Liu, P., Xia, J., Rosenberg, J. N., Oyler, G. A., Betenbaugh, M. J., Nie, Z., & Qiu, G. (2011). The effect of mixotrophy on microalgal growth, lipid content, and expression levels of three pathway genes in Chlorella sorokiniana. Applied Microbiology and Biotechnology, 91(3), 835–844. https://doi.org/10.1007/s00253-011-3399-8

Wang, H., Fu, R., & Pei, G. (2012). A study on lipid production of the mixotrophic microalgae Phaeodactylum tricornutum on various carbon sources. Afr J Microbiol Res, 6(5), 1041–1047.

Yamasaki, M., Yamada, K., Furuya, S., Mitoma, J., Hirabayashi, Y., & Watanabe, M. (2001). 3-Phosphoglycerate dehydrogenase, a key enzyme for L-serine biosynthesis, is preferentially expressed in the radial glia/astrocyte lineage and olfactory ensheathing glia in the mouse brain. Journal of Neuroscience, 21(19), 7691–7704. https://doi.org/10.1523/jneurosci.21-19-07691.2001

Yang, C., Hua, Q., & Shimizu, K. (2000). Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions. Biochemical Engineering Journal, 6(2), 87–102. https://doi.org/10.1016/S1369-703X(00)00080-2

Yun, H.-S., Kim, Y.-S., & Yoon, H.-S. (2021). Effect of Different Cultivation Modes (Photoautotrophic, Mixotrophic, and Heterotrophic) on the Growth of Chlorella sp. And Biocompositions. Frontiers in Bioengineering and Biotechnology, 9, 774143. https://doi.org/10.3389/fbioe.2021.774143




DOI: http://dx.doi.org/10.15578/iaj.19.1.2024.1-9

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Creative Commons License
Indonesian Aquaculture Journal is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats
p-ISSN: 0215-0883
e-ISSN: 2502-6577

 

Hasil gambar untuk isjd