POTENTIAL OF Spirulina sp. FOR REMEDIATING POLLUTANTS IN AQUACULTURE WASTEWATER AND PRODUCING PHYCOCYANIN

Resti Nurmala Dewi

Abstract


The sustainability of aquaculture wastewater treatment is challenging because it has a negative impact on the ecosystem if directly discharges to the environment. Aquaculture wastewater consists of high pollutants loading such as ammonia, phosphor, nitrate, and chemical oxygen demand. To offset the downsides of aquaculture effluent, effective solutions are required. Spirulina sp. is as microalgae that convert nutrients in the wastewater and dissolve carbon into microbial biomass with value such as phycocyanin which can be employed as food, cosmetics, feed, and pharmacy feedstock. The effects of light intensity (6,000 - 10,000 lux) and urea addition (20-100 ppm) on biomass production, COD reduction, and phycocyanin yield were investigated in this study. For 10 days, Spirulina sp. was grown in a batch reactor at 25-27°C with a ratio of 30% inoculum and 70% wastewater under continuous aeration. Spirulina sp. produced the most biomass at 8,000 lux with the addition of 60 ppm of urea accounting for 0.71±0.14 g/L (P > 0.05). Meanwhile, the maximum phycocyanin concentration was 4.21±0.132% at 7,000 lux and 80 ppm urea (P > 0.05) with 96.51% of chemical oxygen demand reduction (P < 0.05). The outcomes of this study highlight the potential of aquaculture effluent to produce valuable microalgal biomass and phycocyanin, which can be used to generate lucrative products.

Keywords


aquaculture wastewater, light intensity, phycocyanin, Spirulina sp., urea

References


Andreotti, V., Solimeno, A., Rossi, S., Ficara, E., Marazzi, F., Mezzanotte, V., & García, J. (2020). Bioremediation of aquaculture wastewater with the microalgae Tetraselmis suecica: Semi-continuous experiments, simulation and photo-respirometric tests. Science of The Total Environment, 738, 139859. https://doi.org/10.1016/j.scitotenv.2020.139859

Ansari, F. A., Singh, P., Guldhe, A., & Bux, F. (2017). Microalgal cultivation using aquaculture wastewater: Integrated biomass generation and nutrient remediation. Algal Research, 21, 169–177. https://doi.org/10.1016/j.algal.2016.11.015

Benvenuti, G., Lamers, P. P., Breuer, G., Bosma, R., Cerar, A., Wijffels, R. H., & Barbosa, M. J. (2016). Microalgal TAG production strategies: Why batch beats repeated-batch. Biotechnology for Biofuels, 9(1), 64. https://doi.org/10.1186/s13068-016-0475-4

Calderini, M. L., Stevčić, Č., Taipale, S., & Pulkkinen, K. (2021). Filtration of Nordic recirculating aquaculture system wastewater: Effects on microalgal growth, nutrient removal, and nutritional value. Algal Research, 60, 102486. https://doi.org/10.1016/j.algal.2021.102486

Cardoso, L. G., Lemos, P. V. F., de Souza, C. O., Oliveira, M. B. P. P., & Chinalia, F. A. (2022). Current advances in phytoremediation and biochemical composition of Arthrospira (Spirulina) grown in aquaculture wastewater. Aquaculture Research, 53(14), 4931–4943. https://doi.org/10.1111/are.15996

Carvalho, J. C. M., Francisco, F. R., Almeida, K. A., Sato, S., & Converti, A. (2004). Cultivation of Arthrospira (Spirulina) platensis (Cyanophyceae) by fed‐batch addition of ammonium chloride at exponentially increasing feeding rates. Journal of Phycology, 40(3), 589–597. https://doi.org/10.1111/j.1529-8817.2004.03167.x

Chaiklahan, R. (2010). Cultivation of Spirulina platensis using pig wastewater in a semi-continuous process. Journal of Microbiology and Biotechnology, 20(3), 609–614. https://doi.org/10.4014/jmb.0907.07026

Cheng, P., Huang, J., Song, X., Yao, T., Jiang, J., Zhou, C., Yan, X., & Ruan, R. (2022). Heterotrophic and mixotrophic cultivation of microalgae to simultaneously achieve furfural wastewater treatment and lipid production. Bioresource Technology, 349, 126888. https://doi.org/10.1016/j.biortech.2022.126888

de la Jara, A., Ruano-Rodriguez, C., Polifrone, M., Assunçao, P., Brito-Casillas, Y., Wägner, A. M., & Serra-Majem, L. (2018). Impact of dietary Arthrospira (Spirulina) biomass consumption on human health: Main health targets and systematic review. Journal of Applied Phycology, 30(4), 2403–2423. https://doi.org/10.1007/s10811-018-1468-4

Dewi, R. N., Mahreni, Nur, M. M. A., Siahaan, A. A., & Ardhi, A. C. (2022). Enhancing the biomass production of microalgae by mixotrophic cultivation using virgin coconut oil mill effluent. Environmental Engineering Research, 28(2), 220059–0. https://doi.org/10.4491/eer.2022.059

Fahrur, M., Undu, M. C., & Syah, R. (2016). Perfoma instalasi pengolah air limbah (IPAL) tambak udang vaname superintensif. Prosiding Forum Inovasi Teknologi Akuakultur.

Gao, F., Li, C., Yang, Z.-H., Zeng, G.-M., Feng, L.-J., Liu, J., Liu, M., & Cai, H. (2016). Continuous microalgae cultivation in aquaculture wastewater by a membrane photobioreactor for biomass production and nutrients removal. Ecological Engineering, 92, 55–61. https://doi.org/10.1016/j.ecoleng.2016.03.046

Guidi, L., Lo Piccolo, E., & Landi, M. (2019). Chlorophyll fluorescence, photoinhibition and abiotic stress: Does it make any difference the fact to be a C3 or C4 species? Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.00174

Guldhe, A., Ansari, F. A., Singh, P., & Bux, F. (2017). Heterotrophic cultivation of microalgae using aquaculture wastewater: A biorefinery concept for biomass production and nutrient remediation. Ecological Engineering, 99, 47–53. https://doi.org/10.1016/j.ecoleng.2016.11.013

Hadiyanto, H., & Suttrisnorhadi, S. (2016). Response surface optimization of ultrasound assisted extraction (UAE) of phycocyanin from microalgae Spirulina platensis. Emirates Journal of Food and Agriculture, 28(4), 227. https://doi.org/10.9755/ejfa.2015-05-193

Heredia-Arroyo, T., Wei, W., Ruan, R., & Hu, B. (2011). Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. Biomass and Bioenergy, 35(5), 2245–2253. https://doi.org/10.1016/j.biombioe.2011.02.036

Iber, B. T., & Kasan, N. A. (2021). Recent advances in Shrimp aquaculture wastewater management. Heliyon, 7(11), e08283. https://doi.org/10.1016/j.heliyon.2021.e08283

Kerena, N., & Krieger-Liszkay, A. (2011). Photoinhibition: molecular mechanisms and physiological significance. Physiologia Plantarum 1, 42(1), 1–5.

Malibari, R., Sayegh, F., Elazzazy, A. M., Baeshen, M. N., Dourou, M., & Aggelis, G. (2018). Reuse of shrimp farm wastewater as growth medium for marine microalgae isolated from Red Sea – Jeddah. Journal of Cleaner Production, 198, 160–169. https://doi.org/10.1016/j.jclepro.2018.07.037

Moraes, C. C., Sala, L., Cerveira, G. P., & Kalil, S. J. (2011). C-phycocyanin extraction from Spirulina platensis wet biomass. Brazilian Journal of Chemical Engineering, 28(1), 45–49. https://doi.org/10.1590/S0104-66322011000100006

Nogueira, S. M. S., Souza Junior, J., Maia, H. D., Saboya, J. P. S., & Farias, W. R. L. (2018). Use of Spirulina platensis in treatment of fish farming wastewater. Revista Ciência Agronômica, 49(4). https://doi.org/10.5935/1806-6690.20180068

Nur, M. M. A., & Buma, A. G. J. (2019). Opportunities and challenges of microalgal cultivation on wastewater, with special focus on palm oil mill effluent and the production of high value compounds. Waste and Biomass Valorization, 10(8), 2079–2097. https://doi.org/10.1007/s12649-018-0256-3

Nur, M. M. A., Garcia, G. M., Boelen, P., & Buma, A. G. J. (2019). Enhancement of C-phycocyanin productivity by Arthrospira platensis when growing on palm oil mill effluent in a two-stage semi-continuous cultivation mode. Journal of Applied Phycology, 31(5), 2855–2867. https://doi.org/10.1007/s10811-019-01806-9

Nur, M. M. A., Rahmawati, S. D., Sari, I. W., Achmad, Z., Setyoningrum, T. M., Jaya, D., Murni, S. W., & Djarot, I. N. (2023). Enhancement of phycocyanin and carbohydrate production from Spirulina platensis growing on tofu wastewater by employing mixotrophic cultivation condition. Biocatalysis and Agricultural Biotechnology, 47, 102600. https://doi.org/10.1016/j.bcab.2023.102600

Ridlo, A., Sedjati, S., & Supriyantini, E. (2016). Aktivitas anti oksidan fikosianin dari Spirulina sp. menggunakan metode transfer elektron dengan DPPH (1,1-difenil-2-pikrilhidrazil). Jurnal Kelautan Tropis, 18(2). https://doi.org/10.14710/jkt.v18i2.515

Sala, L., Ores, J. da C., Moraes, C. C., & Kalil, S. J. (2018). Simultaneous production of phycobiliproteins and carbonic anhydrase by Spirulina platensis LEB‐52. The Canadian Journal of Chemical Engineering, 96(9), 1896–1902. https://doi.org/10.1002/cjce.23131

Soni, R. A., Sudhakar, K., & Rana, R. S. (2017). Spirulina – from growth to nutritional product: A review. Trends in Food Science & Technology, 69, 157–171. https://doi.org/10.1016/j.tifs.2017.09.010

Sukadarti, S., Murni, S. W., & Nur, M. M. A. (2016). Peningkatan phycocyanin pada Spirulina platensis dengan media limbah virgin coconut oil pada photobioreactor tertutup. Eksergi, 2, 1–6.

Taqiyyah, A. M., Risjani, Y., Prihanto, A. A., Yanuhar, U., & Fadjar, M. (2023). Effect of aquaculture wastewater and zarrouk inincreasing biomass, protein, and carotenoids levels of Spirulina platensis. Jurnal Ilmiah Perikanan Dan Kelautan, 15(2), 458–467.

Taufikurahman, T., Ilhamsyah, D. P. A., Rosanti, S., & Ardiansyah, M. A. (2020). Preliminary design of phycocyanin production from Spirulina platensis using anaerobically digested dairy manure wastewater. IOP Conference Series: Earth and Environmental Science, 520(1), 012007. https://doi.org/10.1088/1755-1315/520/1/012007

Wu, Q., Liu, L., Miron, A., Klímová, B., Wan, D., & Kuča, K. (2016). The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview. Archives of Toxicology, 90(8), 1817–1840. https://doi.org/10.1007/s00204-016-1744-5




DOI: http://dx.doi.org/10.15578/ifrj.30.1.2024.%25p


Creative Commons License
Indonesian Fisheries Research Journal is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats
p-ISSN 0853-8980
e-ISSN 2502-6569

Find in a library with WorldCatCrossref logoSHERPA/RoMEO Logogoogle scholardoaj