THE DISTRIBUTION AND ABUNDANCE OF DECAPOD AND FISH COMMUNITIES IN CLEVELAND BAY, AUSTRALIA

Andhika Prima Prasetyo, Rudy Masuswo Purwoko

Abstract


Spatial and temporal variations in the fish and decapod communities were investigated at three stations in Cleveland Bay along with other zooplankton and phytoplankton communities. The linkage between biological assemblages and physical properties of the ocean was explained to develop better understanding of population dynamic of planktonic communities. Biological and physical properties data were gathered in 3 stations by 6 different trips. The results show that there is a significant association between daytime and tidal period to the abundance of planktonic communities (P < 0.05). Spatial distribution of fish and decapod communities are likely explained by “predator pit” and “match/mismatch” concepts to increase the survival probability along with physical properties of the ocean. 


Keywords


Biological oceanography; decapod and fish communities; Cleveland bay

Full Text:

PDF

References


Anger, K. (2001). The Biology of Decapod Crustacean Larvae. Lisse, The Netherlands: A.A. Balkema.

Bakun, A. (2006). Fronts and eddies as key structures in the habitat of marine fish larvae: opportunity, adaptive response and competitive advantage. Scientia Marina, 70, 105-122.

Blaxter, J. H. S., & Hunter, J. R. (1982). The Biology of the Clupeoid Fishes. Advances in Marine Biology, 20, 1–223. doi:10.1016/S0065-2881(08)60140-6

Brinkman, R., Wolanski, E., Deleersnijder, E., F, M., & Skirving, W. (2001). Oceanic inflow from the Coral Sea into the Great Barrier Reef. Estuarine, Coastal and Shelf Science, 54, 655–668.

Church, J., & Craig, P. (1998). Australia’s Shelf Seas: Diversity and Complexity. In A. R. Robinson & K. H. Brink (Eds.), The Sea (Vol. 11, pp. 933–964).

Cury, P., Bakun, A., Crawford, R., Jarre, A., Quinones, R., Shannon, L., & Verheye, H. (2000). Small pelagics in upwelling system: petterns of interaction and structural changes in "wasp-waist" ecosystems. ICES Journal of Marine Science, 57(3), 603-618. doi:10.1006/jmsc.2000.0712

Cushing, D. H. (1990). Plankton Production and Year-class Strength in Fish Populations: an Update of the Match/ M ismatc h Hypothesis. Advances in Marine Biology, 26, 249-293.

D3731-87, A. (2012). Standard Practices for Measurement of Chlorophyll Content of Algae in Surface Waters. West Conshohocken, PA: ASTM International.

DTMRQ. (2014). Queensland Tide Tables Standard Port Tide Times 2015. Brisbane: Department of Transport and Main Roads.

Fabricius, K., De’ath, G., McCook, L., Turak, E., & Williams, D. M. (2005). Changes in algal, coral and fish assemblages along water quality gradients on the inshore Great Barrier Reef. Marine pollution bulletin, 51(1), 384-398. doi:10.1016/j.marpolbul.2004.10.041

Fidelman, P. I. J., Leitch, A. M., & Nelson, D. R. (2013). Unpacking multilevel adaptation to climate change in the Great Barrier Reef, Australia. Global Environmental Change, 23(4), 800-812. doi:10.1016/j.gloenvcha.2013.02.016

Furnas, M., Mitchell, A., Skuza, M., & Brodie, J. (2005). In the other 90%: phytoplankton responses to enhanced nutrient availability in the Great Barrier Reef Lagoon. Marine Pollution Bulletin, 51(1), 253-265. doi:10.1016/j.marpolbul.2004.11.010

Gaudy, R., Cervetto, G., & Pagano, M. (2000). Comparison of the metabolism of Acartia clausi and A. tonsa: influence of temperature and salinity. Journal of experimental marine biology and ecology, 247(1), 51-65.

Graham, N. A. J., Chong-Seng, K. M., Huchery, C., Januchowski-Hartley, F. A., & Nash, K. L. (2014). Coral reef community composition in the context of disturbance history on the Great Barrier Reef, Australia. PloS one, 9(7), e101204.

Hartwick, R. Laboratory Guide to The Plankton of The Townsville Region. Departement of Marine Biology. James Cook University.

Hurrey, L. P., Pitcher, C. R., Lovelock, C. E., & Schmidt, S. (2013). Macroalgal species richness and assemblage composition of the Great Barrier Reef seabed. Marine Ecology Progress Series, 492, 69-83. doi:10.3354/meps10366

Ikeda, T., Kanno, Y., Ozaki, K., & Shinada, A. (2001). Metabolic rates of epipelagic marine copepods as a function of body mass and temperature. Marine Biology, 139(3), 587-596.

Kimmerer, W. J., Burau, J. R., & Bennett, W. A. (1998). Tidally oriented vertical migration and position maintenance of zooplankton in a temperate estuary. Limnology Oceanography, 43(7), 1697-1709.

Kingsford, M. J., Welch, D. J., & Great Barrier Reef Marine Park, A. (2007). Chapter 18: Vulnerability of pelagic systems of the Great Barrier Reef to climate change (ISBN9781876945619). Retrieved from Townsville: http://hdl.handle.net/11017/550

Kramer, M. J., Bellwood, D. R., & Bellwood, O. (2014). Large-scale spatial variation in epilithic algal matrix cryptofaunal assemblages on the Great Barrier Reef. Marine Biology, 161(9), 2183-2190. doi:10.1007/s00227-014-2495-6

Lalli, C. M., & Parsons, T. R. (1997). Biological oceanography: an introduction. - 2nd ed. Oxford, UK: Elsevier Butterworth-Heinemann.

Levinsen, H., & Nielsen, T. G. (2002). The Trophic Role of Marine Pelagic Ciliates and Heterotrophic Dinoflagellates in Arctic and Temperate Coastal Ecosystems: A Cross-Latitude Comparison. -. Limnology and Oceanography, 47(2), 427-443.

M.J., K., K., H., C.G., A., & McKinnon, A. D. (2008). Plankton. In J. A. Hutchings, M. J. Kingsford, & O. Hoegh-Guldberg (Eds.), The Great Barrier Reef: Biology, Environment and Management (pp. 129-144). Collingwood, Vic.: CSIRO Press.

McKinnon, A. D., Duggan, S., & De’ath, G. (2005). Mesozooplankton dynamics in nearshore waters of the Great Barrier Reef. Estuarine, Coastal and Shelf Science, 63, 497-511. doi:10.1016/j.ecss.2004.12.011

McKinnon, A. D., & Thorrold, S. R. (1993). Zooplankton community structure and copepod egg production in coastal waters of the central Great Barrier Reef lagoon. Journal of Plankton Research, 15, 1,387-381,411.

Miller, C. B., & Wheeler, P. A. (2012). Biological Oceanography 2nd ed. Oxford, UK: John Wiley & Sons.

Pittman, S. J., & McAlpine, C. A. (2003). Movements of marine fish and decapod crustaceans: process, theory and application. Advances in Marine Biology, 44, 205–294. doi:10.1016/S0065-2881(03)44004-2

Slotwinski, A., Coman, F., & Richardson, A. J. (2014). Introductory Guide to Zooplankton Identification. Brisbane: CSIRO Publishing.

Smith, A., Brown, C., Bulman, C., Fulton, E., Jhonson, P., Kaplan, I., . . . Tam, J. (2011). Impacts of Fishing Low-Trophic Level Species on Marine Ecosystems. Science, 333(6046), 1147-1150. doi:10.1126/science.1209395

Steinberg, C., & Great Barrier Reef Marine Park, A. (2007). Chapter 3: Impacts of climate change on the physical oceanography of the Great Barrier Reef (ISBN9781876945619). Retrieved from Townsville: http://hdl.handle.net/11017/536

Sutton, S. G., & Tobin, R. C. (2011). Constraints on community engagement with Great Barrier Reef climate change reduction and mitigation. Global Environmental Change, 21(3), 894-905. doi:10.1016/j.gloenvcha.2011.05.006

Uthicke, S., Furnas, M., & Lønborg, C. (2014). Coral reefs on the edge? Carbon chemistry on inshore reefs of the great barrier reef. PloS one, 9(10), e109092.

Vuorinen, I., Hänninen, J., Viitasalo, M., Helminen, U., & Kuosa, H. (1998). Proportion of copepod biomass declines with decreasing salinity in the Baltic Sea. ICES Journal of Marine Science, 55(4), 767-774.

Waite, A. M., Beckley, L. E., Jeffs, A., Saunders, M., Sawstrom, C., O’Rorke, R., . . . Nguyen, M. (2014). Biological Oceanography of Western Rock Lobster Larvae. Retrieved from Perth:

Whitlock, M., & Schluter, D. (2009). The analysis of biological data. Greenwood Village, Colo: Roberts and Co. Publishers.

Wolanski, E. (1994). Physical Oceanographic Processes of the Great Barrier Reef: CRC Press.

Wolanski, E., & Ridd, P. (1990). Mixing and trapping in Australian tropical coastal waters. Coastal Estuarine Study, 38, 165-183.

Zeppel, H. (2011). Climate Change Workshops for Great Barrier Reef Marine Tourism Operators. Tourism in Marine Environments, 7(2), 95-98. doi:10.3727/154427311X13038402065901




DOI: http://dx.doi.org/10.15578/ifrj.22.2.2016.91-98


Creative Commons License
Indonesian Fisheries Research Journal is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats
p-ISSN 0853-8980
e-ISSN 2502-6569

Find in a library with WorldCatCrossref logoSHERPA/RoMEO Logogoogle scholardoaj