Characteristics of The Mackerel Tuna Bone Flour (Euthynnus affinis) Produced by Pressure Hydrolysis Method

Eko Cahyono, Wendy Alexander Tanod, Novalina Maya Sari Ansar, Yana Sambeka

Abstract


Fish bones are a by-product or waste from fish processing, both on a small and large scale. Many efforts have been made to utilize these bones by converting them into bone meal. The use of the pressure hydrolysis method in the production of fish bone meal can produce high-quality products. This study aimed to determine the quality of the mackerel tuna bone meal using the pressure hydrolysis method. The data obtained were then discussed descriptively and qualitatively. The results showed that the pressure hydrolysis method effectively produced mackerel tuna bone meal. The highest yield of mackerel tuna bone meal was obtained in the TT2 treatment with a heating time of 2 hours. The bone meal produced had moisture content ranging from 6.58% to 8.76%, ash content ranging from 96.86% to 98.82%, and organoleptic values such as odor, texture, and color were acceptable to the panelists. During storage for 3 days at room temperature, there was mold growth of Aspergillus flavus and Aspergillus penicillium in the range of 1.25×102 to 1.45×102 colonies per gram and met the minimum standards set by the Indonesian National Standard (SNI).

Keywords


Euthynnus affinis; pressure hydrolysis; bone flour

Full Text:

PDF

References


Ahmad Khuldi, I. K. & A. N. A. (2016). Pengaruh Frekuensi Perebusan Terhadap Karakteristik Tepung Tulang Ikan Belida (Chitala sp.). Jurnal Ilmu Perikanan Tropis, 21(2), 32–40.

Amaral Corrêa, T. H., & França Holanda, J. N. (2019). Fish bone as a source of raw material for synthesis of calcium phosphate. Materials Research, 22, 1–5. https://doi.org/10.1590/1980-5373-MR-2019-0486

AOAC. (2005). Official method of Analysis. 18th Edition, Association of Officiating Analytical Chemists.

Astuti, P., Anita, S., & Hanifah, T. A. (2014). Potensi Abu Dari Tulang Ikan Tongkol Sebagai Adsorben Ion Mangan Dalam Larutan. Jurnal Online Mahasiswa Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Riau, 1(2).

Atanda, S. A., Olsen, M., Crossa, J., Burgueño, J., Rincent, R., Dzidzienyo, D., Beyene, Y., Gowda, M., Dreher, K., Boddupalli, P. M., Tongoona, P., Danquah, E. Y., Olaoye, G., & Robbins, K. R. (2021). Scalable Sparse Testing Genomic Selection Strategy for Early Yield Testing Stage. Frontiers in Plant Science, 12(June), 1–10. https://doi.org/10.3389/fpls.2021.658978

Bagau, B. (2012). SPECIAL BONE MEAL Aplikasi Alkali Alami dan Sintetik Tulang Ikan Cakalang. Unpad Pres.

Cahyono, E., Suptijah, P., & Wientarsih, I. (2014). Development of A Pressurized Hydrolysis Method for Producing Glucosamine. Asian Journal of Agriculture and Food Sciences, 02(05), 390–396.

Coppola, D., Lauritano, C., Esposito, F. P., Riccio, G., Rizzo, C., & de Pascale, D. (2021). Fish Waste: From Problem to Valuable Resource. Marine Drugs, 19(2), 1–39. https://doi.org/10.3390/MD19020116

Dong, Y., Yan, W., Zhang, X. Di, Dai, Z. Y., & Zhang, Y. Q. (2021). Steam explosion-assisted extraction of protein from fish backbones and effect of enzymatic hydrolysis on the extracts. Foods, 10(8). https://doi.org/10.3390/foods10081942

Dubey, S., Meher, P., Shetty, A., Umtol, A., & Kirloskar, D. S. (2021). Waste Management in Fishery Industry: A Review. International Journal of Engineering Research & Technology, 9(3), 206–209. www.ijert.org

Giyatmi, & Irianto, H. E. (2017). Chapter Ten - Enzymes in Fermented Fish. In S.-K. Kim & F. Toldrá (Eds.), Marine Enzymes Biotechnology: Production and Industrial Applications, Part III - Application of Marine Enzymes (Vol. 80, pp. 199–216). Academic Press. https://doi.org/https://doi.org/10.1016/bs.afnr.2016.10.004

Guo, J., Zhu, S., Chen, H., Zheng, Z., & Pang, J. (2022). Ultrasound-assisted solubilization of calcium from micrometer-scale ground fish bone particles. Food Science and Nutrition, 10(3), 712–722. https://doi.org/10.1002/fsn3.2696

Harahap, H., Manurung, R., Iriany, & Yustira, A. (2023). Processing and Utilization of Natural Resources of Gulamah Fish with Boiling and Steaming Method. IOP Conference Series: Earth and Environmental Science, 1188(1). https://doi.org/10.1088/1755-1315/1188/1/012025

Hassane, A. M. A., El-Shanawany, A. A., Abo-Dahab, N. F., Abdel-Hadi, A. M., Abdul-Raouf, U. M., & Mwanza, M. (2017). Influence of Different Moisture Contents and Temperature on Growth and Production of Aflatoxin B1 by a Toxigenic Aspergillus flavus Isolate in Wheat Flour. Journal of Ecology of Health & Environment, 5(3), 77–83. https://doi.org/10.18576/jehe/050302

Hilmarsdottir, G. S., Ogmundarson, Ó., Arason, S., & Gudjónsdóttir, M. (2020). The effects of varying heat treatments on lipid composition during pelagic fishmeal production. Processes, 8(9), 1–15. https://doi.org/10.3390/PR8091142

Ijong, F. G. (2015). Mikrobiologi Perikanan dan Kelautan. Rineke Cipta.

Istiqlaal, S. (2017). Proximate Levels of Bone Bluefin Tuna Fish As Gelatinization By Product. IOSR Journal of Environmental Science, Toxicology and Food Technology, 11(04), 12–17. https://doi.org/10.9790/2402-1104021217

Kondolele, S. L., Asikin, A. N., Kusumaningrum, I., Diachanty, S., & Zuraida, I. (2022). Pengaruh Suhu Perebusan Terhadap Karakteristik Fisikokimia Tepung Tulang Ikan Tenggiri (Scomberomorus commerson). Media Teknologi Hasil Perikanan, 10(3), 177–184. https://doi.org/10.35800/mthp.10.3.2022.34938

Kontominas, M. G., Badeka, A. V., Kosma, I. S., & Nathanailides, C. I. (2021). Innovative seafood preservation technologies: Recent developments. Animals, 11(1), 1–40. https://doi.org/10.3390/ani11010092

Kot, K., Kosik-bogacka, D., & Łanocha-arendarczyk, N. (2021). The Effects of Calcium, Magnesium, Phosphorus, Fluoride, and Lead on Bone Tissue.

Luque, P. L., Sanchez-Ilárduya, M. B., Sarmiento, A., Murua, H., & Arrizabalaga, H. (2019). Characterization of carbonate fraction of the Atlantic bluefin tuna fin spine bone matrix for stable isotope analysis. PeerJ, 2019(7), 1–15. https://doi.org/10.7717/peerj.7176

Meulisa, A. I., Rozi, A., & Zuraidah, S. (2021). KAJIAN MUTU KIMIAWI TEPUNG TULANG IKAN TUNA SIRIP KUNING (Thunnus albacares) DENGAN SUHU PENGERINGAN YANG BERBEDA. Jurnal Perikanan Tropis, 8(1), 35. https://doi.org/10.35308/jpt.v8i1.2417

Nawaz, A., Li, E., Irshad, S., HHM, H., Liu, J., Shahbaz, H. M., Ahmed, W., & Regenstein, J. M. (2020). Improved effect of autoclave processing on size reduction, chemical structure, nutritional, mechanical and in vitro digestibility properties of fish bone powder. Advanced Powder Technology, 31(6), 2513–2520. https://doi.org/10.1016/j.apt.2020.04.015

Pelyuntha, W., Yafa, A., Charoenwong, B., & Vongkamjan, K. (2022). Effectiveness of the Organic Acid-Based Antimicrobial Agent to Prevent Bacterial Contamination in Fish Meal. Animals, 12(23), 1–9. https://doi.org/10.3390/ani12233367

Royes and Yanong. (2002). Molds in Fish Feeds and Aflatoxicosis 1. University of Florida Extension,Fact Sheet FA-95, August, 1–4.

Rucah, T. I. (2014). Pengaruh Suhu Pengukusan Terhadap Sifat Fisika Kimia Tepung Ikan Rucah.

SNI. (1991). Metode pengujian organoleptik - Produk perikanan. Badan Standardisasi Indonesia.

SNI. (2015). Cara Uji Kimia: Bagian 2 Pengujian Kadar Air pada Produk Perikanan. Bandan Standardisasi Indonesia.

Suntornsaratoon, P., Charoenphandhu, N., & Krishnamra, N. (2018). Fortified tuna bone powder supplementation increases bone mineral density of lactating rats and their offspring. Journal of the Science of Food and Agriculture, 98(5), 2027–2034. https://doi.org/10.1002/jsfa.8688

Tha, A., Raju, C. V., Lakshmisha, I. P., Kumar, P. A., Sarojini, A., Endra, G., & Pal, J. (2019). Nutritional Composition of Fish Bone Powder Extracted from Three different Fish Filleting Waste Boiling with Water and an Alkaline Media. International Journal of Current Microbiology and Applied Sciences, 8(02), 2942–2948. https://doi.org/10.20546/ijcmas.2019.802.342

Usman, M., Sahar, A., Inam-Ur-Raheem, M., Rahman, U. ur, Sameen, A., & Aadil, R. M. (2022). Gelatin extraction from fish waste and potential applications in food sector. International Journal of Food Science & Technology, 57(1), 154–163. https://doi.org/https://doi.org/10.1111/ijfs.15286

Wijayanti, I., Benjakul, S., & Sookchoo, P. (2021). Effect of high pressure heating on physical and chemical characteristics of Asian sea bass (Lates calcarifer) backbone. Journal of Food Science and Technology, 58(8), 3120–3129. https://doi.org/10.1007/s13197-020-04815-6

Xie, Y., Xu, J., Yang, R., Alshammari, J., Zhu, M., & Sablani, S. (2021). Moisture Content of Bacterial Cells Determines Thermal.




DOI: http://dx.doi.org/10.15578/plgc.v4i3.13169

Refbacks

  • There are currently no refbacks.



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats


E-ISSN: 2720-9512

ISSN: 2715-9620

 

                  ESJI Indexing