IMPLEMENTATION OF COLD CHAIN SYSTEM IN FROZEN POCKET YELLOWFIN TUNA (Thunnus albacares)

Romauli Juliana Napitupulu, Hanifah Hasna, Pola S. T Panjaitan

Abstract


Cold chain systems are essential in maintaining the quality and safety of frozen fishery products, particularly yellowfin tuna, which has high economic value. This study evaluates the implementation of the cold chain system in the production of frozen yellowfin tuna saku at a processing company. The research was conducted using a descriptive method through direct observation and temperature monitoring across all stages of the cold chain, including receiving of raw material, processing, and cold storing. Temperature measurements were conducted on tuna, water, and processing rooms, using three tuna samples per observation, with triplicate measurements for each sample. The results demonstrated that tuna temperatures remained below the Indonesian regulatory limit of 4.4°C throughout processing, with raw material temperatures averaging 2.4 ± 0.76°C. Water temperatures during temporary storage averaged 3.5°C, while washing water ranged from 25–27°C. Room temperatures across processing areas were maintained between 22–23°C, complying with the company’s standard maximum of 25°C. The Air Blast Freezer (ABF) operated at –35 to –38.9°C, with an average of –37.76 ± 1.12°C across ten weeks, surpassing both company and national standards (≤ –18°C). Cold storage temperatures ranged from –20°C to –30°C, maintaining the product core temperature at –18°C. Although overall temperature control complied with required standards, the findings indicate the need for more stringent temperature monitoring to minimize fluctuations at several critical stages. The study concludes that the cold chain system is effectively implemented, but improvements in consistent temperature stability are necessary to further prevent quality degradation.

Keywords


Cold chain, distribution, frozen product, tuna, quality.

Full Text:

PDF

References


Anderssen, K. E., Syed, S., & Stormo, S. K. (2021). Quantification and mapping of tissue damage from freezing in cod by magnetic resonance imaging. Food Control, 123, 1–20. https://doi.org/10.1016/j.foodcont.2020.107734

Ariyani, F., Kristiningrum, E., Barokah, G. R., & Januar, H. I. (2020). The effects of carbon monoxide treatment on the physical and chemical qualities of tuna steak during iced storage. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, 15(2), 73–79. https://doi.org/10.15578/squalen.v15i2.456

BSN. (2021). SNI 2729:2021 Tentang Ikan Segar. Badan Standardisasi Nasional. www.bsn.go.id

Chen, X., & Hung, Y. C. (2018). Development of a Chlorine Dosing Strategy for Fresh Produce Washing Process to Maintain Microbial Food Safety and Minimize Residual Chlorine. Journal of Food Science, 83(6), 1701–1706. https://doi.org/10.1111/1750-3841.14189

Dang, H. T. T., Gudjonsdóttir, M., Karlsdóttir, M. G., Van Nguyen, M., Tómasson, T., & Arason, S. (2018). Stability of Golden redfish (Sebastes marinus) during frozen storage as affected by raw material freshness and season of capture. Food Science and Nutrition, 6(4), 1065–1076. https://doi.org/10.1002/fsn3.648

Djenane, D., & Roncalés, P. (2018). Carbon monoxide in meat and fish packaging: Advantages and limits. Foods, 12(7), 1–34. https://doi.org/10.3390/foods7020012

Erikson, U., Uglem, S., & Greiff, K. (2021). Freeze-chilling of whitefish: Effects of capture, on-board processing, freezing, frozen storage, thawing, and subsequent chilled storage—a review. Foods, 10(11), 1–26. https://doi.org/10.3390/foods10112661

Fan, L., Liu, X., Dong, X., Dong, S., Xiang, Q., & Bai, Y. (2021). Effects of UVC light-emitting diodes on microbial safety and quality attributes of raw tuna fillets. LWT, 139, 1–30. https://doi.org/10.1016/j.lwt.2020.110553

Fauziyah, A. F., & Syihab, A. (2024). Studi Proses Pengolahan Precooked Tuna Loin Frozen Jenis Skipjack Tuna. Jurnal Perikanan, 14(1), 285–297. https://doi.org/10.29303/jp.v14i1.770

Hu, Y. M., Zhang, N. H., Wang, H., Yang, Y. F., & Tu, Z. C. (2021). Effects of pre-freezing methods and storage temperatures on the qualities of crucian carp (Carassius auratus var. pengze) during frozen storage. Journal of Food Processing and Preservation, 45(2), 1. https://doi.org/10.1111/jfpp.15139

Hwang, B. S., Wang, J. T., & Choong, Y. M. (2003). A rapid gas chromatographic method for the determination of histamine in fish and fish products. Food Chemistry, 82(2), 329–334. https://doi.org/10.1016/S0308-8146(03)00005-0

Denden, I., Njehi, M., & Krifi, B. (2024). Implementation of HACCP System in a tuna fish Industry. World Journal of Advanced Research and Reviews, 21(3), 1899–1909. https://doi.org/10.30574/wjarr.2024.21.3.0158

Liu, L., Jiao, W., Xu, H., Zheng, J., Zhang, Y., Nan, H., & Huang, W. (2023). Effect of rapid freezing technology on quality changes of freshwater fish during frozen storage. LWT, 189, 1–10. https://doi.org/10.1016/j.lwt.2023.115520

Liu, W., Lyu, J., Wu, D., Cao, Y., Ma, Q., Lu, Y., & Zhang, X. (2022). Cutting Techniques in the Fish Industry: A Critical Review. Foods, 11(20), 1–24. https://doi.org/10.3390/foods11203206

Maharani Putri, N. N. F., Salampessy, R. B., & Sayuti, M. (2023). Karakteristik Mutu, Rantai Dingin, Rendemen dan Produktivitas Pengolahan Tuna (Thunnus sp.) Cube Beku di CV. Satu Tuna Nusantara, Denpasar-Bali. Buletin Jalanidhitah Sarva Jivitam, 5(1), 11–21. https://doi.org/10.15578/bjsj.v5i1.12142

Marrone, R., Mascolo, C., Palma, G., Smaldone, G., Girasole, M., & Anastasio, A. (2015). Carbon monoxide residues in vacuum-packed yellowfin tuna loins (Thunnus Albacares). Italian Journal of Food Safety, 4(3), 142–144. https://doi.org/10.4081/ijfs.2015.4528

Massie, G. K., Reo, A. R., Makapedua, D. M., Sanger, G., Montolalu, R. I., & Feny, M. (2022). Kajian Mutu Ikan Tuna Kaleng Selama Proses Sterilisasi Di PT. Sinar Pure Foods International. Media Teknologi Hasil Perikanan, 10(2), 117–121. https://doi.org/10.35800/mthp.10.2.2022.40277

Mercogliano, R., & Santonicola, S. (2019). Scombroid fish poisoning: Factors influencing the production of histamine in tuna supply chain. A review. LWT, 114, 1–7. https://doi.org/10.1016/j.lwt.2019.108374

MMAF. (2017). Peraturan Direktur Jenderal Penguatan Daya Saing Produk Kelautan dan Perikanan Nomor 15/PER-DJPDSPKP/2017 Tentang Petunjuk Teknis Pengelolaan Bantuan Pemerintah Pembangunan Gudang Beku Terintegrasi Tahun 2017. DJPDSPKP.

Palyama, A. F., & Dharmayanti, N. (2021). Indentifikasi Produktivitas Pengolahan Tuna Beku Pada PT. Maluku Prima Makmur di Kota Ambon. Jurnal Penyuluhan Perikanan Dan Kelautan, 15(1), 1–17. https://doi.org/10.33378/jppik.v15i1.233

Romotowska, P. E., Karlsdóttir, M. G., Gudjónsdóttir, M., Kristinsson, H. G., & Arason, S. (2016). Influence of feeding state and frozen storage temperature on the lipid stability of Atlantic mackerel (Scomber scombrus). International Journal of Food Science and Technology, 51(7), 1711–1720. https://doi.org/10.1111/ijfs.13146

Sarah, M., Marwati, Misran, E., & Madinah, I. (2024). Analysis of drip loss and thermal destruction rate of tuna fillets during the low-temperature preservation period. Applied Food Research, 4(2), 1–15. https://doi.org/10.1016/j.afres.2024.100648

Suryaningrum, T. D., & Ikasari, D. (2019). Physicochemical and microbiological evaluation on Frozen Tuna Loin handling in Ambon, Indonesia. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, 14(1), 9–19. https://doi.org/10.15578/squalen.v14i1.381

Suryono, M., Azka, A., Sada Harahap, K., & Fadilah, R. (2023). Identification Of Critical Points Of Traceability In Frozen Cube Tuna Using FMECA Method In Tuna Freezing Company. Aurelia Journal, 5(1), 177–184.

Sveinsdóttir, H. I., Karlsdóttir, M. G., Arason, S., Stefánsson, G., Sone, I., Skåra, T., Rustad, T., Larsson, K., Undeland, I., & Gudjónsdóttir, M. (2020). Effect of antioxidants on the sensory quality and physicochemical stability of Atlantic mackerel (Scomber scombrus) fillets during frozen storage. Food Chemistry, 321. https://doi.org/10.1016/j.foodchem.2020.126744

Tingman, W., Jian, Z., & Xiaoshuan, Z. (2010). Fish product quality evaluation based on temperature monitoring in cold chain. African Journal of Biotechnology, 9(37), 6146–6151. https://doi.org/10.1111/ijfs.13146

Wang, D., Deng, J., Li, X., Yang, X., Chen, S., Zhao, Y., Li, C., & Wu, Y. (2021). Changes in microbial composition and quality characteristics of yellowfin tuna under different storage temperature. Quality Assurance and Safety of Crops and Foods, 13(4), 54–61. https://doi.org/10.15586/qas.v13i4.988

Xiao, X., He, Q., Fu, Z., Xu, M., & Zhang, X. (2016). Applying CS and WSN methods for improving efficiency of frozen and chilled aquatic products monitoring system in cold chain logistics. Food Control, 60, 656–666. https://doi.org/10.1016/j.foodcont.2015.09.012

Xiong, Z., Zhou, M., Xiao, S., Zhang, Z., & Li, D. (2024). Refrigerated Storage-Induced Quality Deterioration of Mandarin Fish (Siniperca chuatsi): Analyzing the Role of Endogenous Enzymes through TMT-Based Quantitative Proteomics. LWT, 116721. https://doi.org/10.1016/j.lwt.2024.116721

Zalukhu, R. M. S., Sayuti, M., & Salampessy, R. B. (2023). Quality Testing Of Frozen Cooked Tuna (Thunnus albacares) Loins. Aurelia Journal, 1, 79–88.

Zhang, X., Zhang, Y., Ding, H., Zhang, W., & Dai, Z. (2022). Effect of Washing Times on the Quality Characteristics and Protein Oxidation of Silver Carp Surimi. Foods, 11(16), 1–4. https://doi.org/10.3390/foods11162397




DOI: http://dx.doi.org/10.15578/aj.v7i2.15456

Refbacks

  • There are currently no refbacks.




Public Services

 


Citation

           

Pusat Penelitian dan Pengabdian Kepada Masyarakat
Politeknik Kelautan dan Perikanan Dumai

Jl. Wan Amir No. 1, Kel. Pangkalan Sesai, Kec. Dumai Barat, Kota Dumai

Telp/Fax: (0765) 4300443

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats