GROWTH PERFORMANCE AND INTESTINAL Aeromonas spp. OF BONYLIP BARB (Osteochilus vittatus) AFTER RECEIVING DIET CONTAINING SALT AND HERBAL CONCOCTION SUPPLEMENTATION

Hamdan Syakuri, Petrus Hary Tjahja Soedibya, Sri Marnani, Anandita Ekasanti, Kasprijo Kasprijo, Rima Oktavia Kusuma, Rudy Wijaya, Dewi Nugrayani, Emyliana Listiowati, Mustika Palupi

Abstract


Salt and herbal supplementations in fish feed are expected to promote aquaculture productivity, including for slow-growing fish such as Bonylip barb (Osteochilus vittatus). The objective of this study was to evaluate the growth performance and occurrence of Aeromonas spp. in the intestine of Bonylip barb fed a diet supplemented with salt and herbs. This experiment was conducted using a completely randomized design with four treatments: 1) control, 2) salt 3% supplementation, 3) herbal supplementation, and 4) Salt 3% and herbal supplementation. Growth performance evaluation included weight gain, relative growth rate, and specific growth rate after 30 and 60 days of rearing.  Bacterial samples were isolated on trypticase soy agar (TSA) and glutamate starch phenol red agar (GSP) media. Yellow colonies on GSP were counted and confirmed as Aeromonas spp. via molecular identification based on 16S rDNA sequence. Results showed that herbal supplementation, either alone or in combination with 3% salt, insignificantly increased the fish growth performance in the short-term (30 days), but tended to decrease it over the long-term (60 days). Salt supplementation consistently decreased fish growth performance but improved fish survival rates. Aeromonas isolates comprised more than 60 % of the culturable intestinal bacteria in all treatments. Furthermore, herbal supplementation appeared to increase the percentage of Aeromonas spp. in the intestine, with identified species including Aeromonas veronii, Aeromonas caviae, and Aeromonas jandaei.

Keywords


Osteochilus vittatus; salt; herbs; growth; Aeromonas

Full Text:

PDF

References


Alam, M. S., Watanabe, W. O., & Carroll, P. M. (2021). Evaluation of salt-incorporated diets on growth, body composition and plasma electrolytes of black sea bass Centropristis striata reared in a semi-pilot scale low salinity recirculating aquaculture system. Aquaculture, 533, 736102. https://doi.org/https://doi.org/10.1016/j.aquaculture.2020.736102

Alam, M. S., Watanabe, W. O., Myers, A. R., Rezek, T. C., Carroll, P. M., & Skrabal, S. A. (2015). Effects of dietary salt supplementation on growth, body composition, tissue electrolytes, and gill and intestinal Na+/K+ ATPase activities of black sea bass reared at low salinity. Aquaculture, 446, 250–258. https://doi.org/https://doi.org/10.1016/j.aquaculture.2015.05.001

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic Local Alignment Search Tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

Aryani, N., Mardiah, A., Azrita, & Syandri, H. (2017). Influence of Different Stocking Densities on Growth, Feed Efficiency and Carcass Composition of Bonylip Barb (Osteochilus vittatus Cyprinidae) Fingerlings. Pakistan Journal of Biological Sciences : PJBS, 20(10), 489–497. https://doi.org/10.3923/pjbs.2017.489.497

Belton, B., Little, D. C., Zhang, W., Edwards, P., Skladany, M., & Thilsted, S. H. (2020). Farming fish in the sea will not nourish the world. Nature Communications, 11(1), 5804. https://doi.org/10.1038/s41467-020-19679-9

Cai, J., Yang, Z., Huang, Y., Jian, J., & Tang, J. (2023). Effects of Chinese herbal medicines on growth performance, intestinal flora, immunity and serum metabolites of hybrid grouper (Epinephelus fuscoguttatus♀×Epinephelus lanceolatu♂). Fish & Shellfish Immunology, 140, 108946. https://doi.org/https://doi.org/10.1016/j.fsi.2023.108946

Cnaani, A., Barki, A., Slosman, T., Scharcanski, A., Milstein, A., & Harpaz, S. (2010). Dietary salt supplement increases the growth rate in freshwater cultured tilapia hybrids. Aquaculture Research, 41(10), 1545–1548. https://doi.org/https://doi.org/10.1111/j.1365-2109.2009.02438.x

de Aguiar, N. C., Dias, P. S., Balen, R. E., Bombardelli, R. A., Colpini, L., & Meurer, F. (2020). Dietary sodium chloride effect in Nile tilapia fed with fish meal-free diets. Spanish Journal of Agricultural Research, 18(3), e0610.

Dong, H. T., Techatanakitarnan, C., Jindakittikul, P., Thaiprayoon, A., Taengphu, S., Charoensapsri, W., Khunrae, P., Rattanarojpong, T., & Senapin, S. (2017). Aeromonas jandaei and Aeromonas veronii caused disease and mortality in Nile tilapia, Oreochromis niloticus (L.). Journal of Fish Diseases, 40(10), 1395–1403. https://doi.org/10.1111/jfd.12617

Elfahmi, Woerdenbag, H. J., & Kayser, O. (2014). Jamu: Indonesian traditional herbal medicine towards rational phytopharmacological use. Journal of Herbal Medicine, 4(2), 51–73. https://doi.org/https://doi.org/10.1016/j.hermed.2014.01.002

FAO. (2020). FAO Fisheries and Aquaculture - Fishery Statistical Collections - Global Aquaculture Production. In: FAO Fisheries and Aquaculture Division [online]. Rome. [Cited 3 November 2021]. https://www.fao.org/fishery/en/collection/aquaculture

Fernández-Bravo, A., & Figueras, M. J. (2020). An Update on the Genus Aeromonas : Taxonomy , Epidemiology , and Pathogenicity. Microorganisms, 129, 3–6.

Fujaya, Y., Hidayani, A. A., Sari, D. K., Aslamyah, S., Rukminasari, N., Muthalib, A., Cristianto, S., Defista, E., Fazhan, H., & Waiho, K. (2023). The Optimal Dosage of Fermented Herbal Extract on Growth and Feed Efficiency of Nile Tilapia (Oreochromis niloticus). Tropical Life Sciences Research, 34(2), 39–56. https://doi.org/10.21315/tlsr2023.34.2.3

Hallali, E., Kokou, F., Chourasia, T. K., Nitzan, T., Con, P., Harpaz, S., Mizrahi, I., & Cnaani, A. (2018). Dietary Salt Levels Affect Digestibility, Intestinal Gene Expression, and the Microbiome, in Nile Tilapia (Oreochromis niloticus). PLOS ONE, 13(8), e0202351. https://doi.org/10.1371/journal.pone.0202351

Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4(1).

Infante-Villamil, S., Huerlimann, R., & Jerry, D. R. (2021). Microbiome diversity and dysbiosis in aquaculture. Reviews in Aquaculture, 13(2), 1077–1096. https://doi.org/https://doi.org/10.1111/raq.12513

Jun, P., Rahmat, E., Han, C.-H., Yang, C., & Kang, Y. (2021). Traditional Chinese Medicine and Traditional Indonesian Medicine: A Comparative Review of Herbal Medicines Restricted in Pregnancy. Chinese Journal of Integrative Medicine, 27(10), 794–800. https://doi.org/10.1007/s11655-021-3487-7

Jung-Schroers, V., Adamek, M., Harris, S., Syakuri, H., Jung, A., Irnazarow, I., & Steinhagen, D. (2018). Response of the intestinal mucosal barrier of carp (Cyprinus carpio) to a bacterial challenge by Aeromonas hydrophila intubation after feeding with beta-1,3/1,6-glucan. Journal of Fish Diseases, 41(7), 1077–1092. https://doi.org/10.1111/jfd.12799

Kot, B., Kwiatek, K., Janiuk, J., Witeska, M., & Pękala-Safińska, A. (2019). Antibacterial activity of commercial phytochemicals against aeromonas species isolated from fish. Pathogens, 8(3), 1–12. https://doi.org/10.3390/pathogens8030142

Li, T., Raza, S. H. A., Yang, B., Sun, Y., Wang, G., Sun, W., Qian, A., Wang, C., Kang, Y., & Shan, X. (2020). Aeromonas veronii Infection in Commercial Freshwater Fish: A Potential Threat to Public Health. Animals, 10(4), 608. https://doi.org/10.3390/ani10040608

Li, X. M., Zhu, Y. J., Ringø, E., & Yang, D. G. (2020). Prevalence of Aeromonas hydrophila and Pseudomonas fluorescens and factors influencing them in different freshwater fish ponds. Iranian Journal of Fisheries Sciences, 19(1), 111–124. https://doi.org/10.22092/ijfs.2019.120174

Liu, C. (2021). Overview on development of ASEAN traditional and herbal medicines. Chinese Herbal Medicines, 13(4), 441–450. https://doi.org/https://doi.org/10.1016/j.chmed.2021.09.002

Marchesi, J. R., Sato, T., Weightman, A. J., Martin, T. A., Fry, J. C., Hiom, S. J., & Wade, W. G. (1998). Design and Evaluation of Useful Bacterium-Specific PCR Primers that Amplify Genes Coding for Bacterial 16S rRNA. Applied and Environmental Microbiology, 64(2), 795–799. https://doi.org/10.1128/aem.64.2.795-799.1998

Nakajima, M., & Sugiura, S. (2016). Effects of dietary NaCl on the in vivo apparent absorption of dietary nutrients determined in rainbow trout (Oncorhynchus mykiss). Aquaculture, 460, 1–7. https://doi.org/https://doi.org/10.1016/j.aquaculture.2016.04.003

Nasir, N., & Hamed, Q. (2016). Growth development of young common carp Cyprinus carpio through dietary sodium chloride supplementation. Mesopotamia Environmental Journal, 2(2), 12–18.

Naylor, R. L., Hardy, R. W., Buschmann, A. H., Bush, S. R., Cao, L., Klinger, D. H., Little, D. C., Lubchenco, J., & Shumway, S. E. (2021). A 20-year retrospective review of global aquaculture. Nature, 591(March), 551–563. https://doi.org/10.1038/s41586-021-03308-6

Parham, S., Kharazi, A. Z., Bakhsheshi-Rad, H. R., Nur, H., Ismail, A. F., Sharif, S., RamaKrishna, S., & Berto, F. (2020). Antioxidant, Antimicrobial and Antiviral Properties of Herbal Materials. In Antioxidants (Vol. 9, Nomor 12). https://doi.org/10.3390/antiox9121309

Putri, I. W., Setiawati, M., & Jusadi, D. (2016). Digestive enzymes and growth performance of common carp , Cyprinus carpio Linnaeus , 1758 with a. Jurnal Iktiologi Indonesia, 17(1), 11–20.

Rahayu, Y. Y. S., Araki, T., & Rosleine, D. (2020). Factors affecting the use of herbal medicines in the universal health coverage system in Indonesia. Journal of Ethnopharmacology, 260, 112974. https://doi.org/https://doi.org/10.1016/j.jep.2020.112974

Salman, N. (2009). Effect of dietary salt on feeding, digestion, growth and osmoregulation in teleost fish. In Essential reviews in experimental biology (hal. 109–150). Society for Experimental Biology Press.

Sharma, A., Chanu, T. I., Nayak, S. K., Jahageerdar, S., & Krishna, G. (2022). Pathogenesis of Aeromonas caviae in Clarias magur. Microbial Pathogenesis, 169, 105662. https://doi.org/https://doi.org/10.1016/j.micpath.2022.105662

Singh, M. K., Borah, D., Dutta, M. P., Gogoi, S., Saikia, C., Sonowal, S., & Manhai, S. K. (2022). A review on Immunostimulatory and antioxidant potential of herbs , Curcuma longa L ., Camellia sinensis L . Zingiber officinale and Allium sativum Linn . in fish health : a sustainable approach for a healthy aquaculture. Ecology, Enviroment, and Conservation, 28(3).

Sun, H., Jami, E., Harpaz, S., & Mizrahi, I. (2013). Involvement of dietary salt in shaping bacterial communities in European sea bass (Dicentrarchus labrax). Scientific Reports, 3(1), 1558. https://doi.org/10.1038/srep01558

Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38(7), 3022–3027. https://doi.org/10.1093/molbev/msab120

Tran, N., Rodriguez, U.-P., Chan, C. Y., Phillips, M. J., Mohan, C. V., Henriksson, P. J. G., Koeshendrajana, S., Suri, S., & Hall, S. (2017). Indonesian aquaculture futures: An analysis of fish supply and demand in Indonesia to 2030 and role of aquaculture using the Asia Fish model. Marine Policy, 79, 25–32. https://doi.org/https://doi.org/10.1016/j.marpol.2017.02.002

Valenzuela-Gutiérrez, R., Lago-Lestón, A., Vargas-Albores, F., Cicala, F., & Martínez-Porchas, M. (2021). Exploring the garlic (Allium sativum) properties for fish aquaculture. Fish Physiology and Biochemistry, 47(4), 1179–1198. https://doi.org/10.1007/s10695-021-00952-7

Welker, T. L., Lim, C., Yildirim-Aksoy, M., & Klesius, P. H. (2012). Susceptibility of Nile tilapia (Oreochromis niloticus) fed with dietary sodium chloride to nitrite toxicity. Aquaculture International, 20(1), 159–176. https://doi.org/10.1007/s10499-011-9449-5

Wongyai, N., Jutagate, A., Grudpan, C., & Jutagate, T. (2020). Condition Index, Reproduction and Feeding of Three Non-Obligatory Riverine Mekong Cyprinids in Different Environments. Tropical Life Sciences Research, 31(2), 159–173. https://doi.org/10.21315/tlsr2020.31.2.8

Zhang, D., Xu, D.-H., Shoemaker, C. A., & Beck, B. H. (2020). The severity of motile Aeromonas septicemia caused by virulent Aeromonas hydrophila in channel catfish is influenced by nutrients and microbes in water. Aquaculture, 519, 734898. https://doi.org/https://doi.org/10.1016/j.aquaculture.2019.734898




DOI: http://dx.doi.org/10.15578/iaj.19.2.2024.111-122

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Creative Commons License
Indonesian Aquaculture Journal is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats
p-ISSN: 0215-0883
e-ISSN: 2502-6577

 

Hasil gambar untuk isjd