EFFECTIVENESS OF BIOFLOC, PROBIOTICS AND THE COMBINATIONS ON GROWTH, IMMUNE RESPONSES AND RESISTANCE OF VANNAMEI SHRIMP INFECTED WITH Vibrio parahaemolyticus

Baref Agung Wicaksono, Widanarni Widanarni, Munti Yuhana, Muhamad Gustilatov, Usamah Afiff

Abstract


Vibrio parahaemolyticus strain that produces PirA and PirB toxins is the main causative agent of Acute Hepatopancreatic Necrosis Disease (AHPND) in vannamei shrimp. This study aimed to evaluate the effect of biofloc application, probiotic Pseudoalteromonas piscicida 1Ub, and their combination on growth, immune response and resistance of vannamei shrimp infected with V. parahaemolyticus strain. This study used a completely randomized design consisting of biofloc-based system treatment with or without probiotic 1Ub and normal seawater as control. All treatment groups were challenged with V. parahaemolyticus AHPND strain at a cell density of 105 CFU mL”1 through immersion, while the negative control was reared without being pathogenic challenged. The shrimp used were in averaged body weight of 1.3 ± 0.002 g, reared for 21 days and fed five times a day at 06:00, 10:00, 14:00, 18:00, and 22:00 WIB. The results showed that the B+Pro combination challenge test treatment resulted the best growth performance (specific growth rate, absolute length gain and feed conversion ratio) (P<0.05) compared to other challenge test treatments. hrimp treated with B+Pro also showed a lower intestinal cell population of V. parahaemolyticus RfR, and significantly higher immune response values (P<0.05) than those of other challenge test treatments and K+. Furthermore, those parameters supported positive impact on final shrimp survival rates in the experiment. This study shows that the application of combination of biofloc and 1Ub probiotic bacteria can significantly protect and increase the resistance of vannamei shrimp to V. parahaemolyticus AHPND infection.

Keywords


Vannamei shrimp; AHPND; Vibrio parahaemolyticus; biofloc; probiotic 1Ub.

Full Text:

PDF

References


Aguirre-guzman, G., Sanchez, J. G., Perez, C. G., Palacio, A. T., Trujilo, R., & Cruz, D. N. (2010). Pathogenecity and infection route of Vibrio parahemolyticus in American white shrimp. Journal of world aquaculture society, 41(3), 464-70. https://doi.org/10.1111/j.1749-7345.2010.00388.

Aguilera-Rivera, D., Prieto-Davó, A., Rodríguez-Fuentes, G., Escalante-Herrera, K. S., & Gaxiola G. (2019). A vibriosis outbreak in the Pacific white shrimp, Litopenaeus vannamei reared in biofloc and clear seawater. Journal of Invertebrate Pathology, 167, 107246. https://doi.org/10.1016/j.jip.2019. 107246.

Anderson, D. P., & Siwicki, A. K. (1993). Basic hematology and serology for fish health programs. second symposium on diseases in asia aquaculture. Aquatic Animal Health and the Environment. October 25-29, 1993, Phuket, Thailand.

Avnimelech, Y. (2009). Biofloc technology, a practical guide book. Louisiana (US): World Aquaculture Society.

[BSN] Badan Standar Nasional. (2014). Intensive vannamei shrimp (Litopenaeus vannamei. Boone, 1931) production in pond lining SNI 8008:2014. Jakarta: National Standardization Agency.

Cheng, W., Liu, C. H., Yeh, S. T., & Chen, J. C. (2004). The immune stimulatory effect of sodium alginate on the white shrimp Litopenaeus vannamei and its resistance against Vibrio alginolyticus. Fish and Shellfish Immunology, 17, 41-51. https://doi.org/10.1016/j.fsi.2004.03.007.

De Schryver, P., Crab, R., Defoirdt, T., Boon, N., & Verstraete, W. (2008). The basics of bio-flocs technology: the added value for aquaculture. Aquaculture, 277, 125-137. https://doi.org/10.1016/-j.aquaculture.2008.02.019.

Ermawati, R. P., Yuhana, M., Widanarni, W., & Afiff, U. (2023). Field testing of dual-species synbiotic microcapsules during IMNV disease outbreak and fluctuate weather: growth performance and immune response in pacific white shrimp (Litopenaeus vannamei). Aquaculture Internasional, 32, 4529–4550. https://doi.org/10.21203/rs.3.rs-3684597/v1.

Ekasari, J., Azhar, M. H., Surawidjaja, E. H., Nuryati, S., Schryver, T. D., & Bossier, P. (2014). Immune response and disease resistance of shrimp fed biofloc grown on different carbon sources. Fish and Shellfish Immunology, 41, 332-339. https://doi.org/10.1016/j.fsi.2014.09.004.

Fatimah, N., Pande, S. J., Natrah, F. M., Meritha, W. W., Widanarni, W., Sucipto, A., & Ekasari, J. (2019). The role of microbial quorum sensing on the characteristics and functionality of bioflocs in aquaculture systems. Aquaculture, 504, 420-426. https://doi.org/10.1016/j.aquaculture.2019.02.022.

[FAO] Food and Agriculture Organization of the United Nations. (2020). Fisheries and aquaculture information and statistics branch [Internet]. [Accessed 10 May 2023]; http://www.fao.org/fishery/statistics.

[FAO] Food and Agriculture Organization of the United Nations. (2022). The state of world fisheries and aquaculture 2022. Sustainability in Action. Rome.

Gustilatov, M., Widanarni, W., Ekasari, J., & Pande, G. S. J. (2022). Protective effects of the biofloc system in Pacific white shrimp (Penaeus vannamei) culture against pathogenic Vibrio parahaemolyticus infection. Fish and Shellfish Immunology, 124, 66-73. https://doi.org/10.1016/j.fsi.2022.03.037.

Gustilatov, M., Widanarni, W., Ekasari, J., & Pande, G. S. J. (2023). Biofloc system supplemented by Pseudoalteromonas piscicida 1Ub protects the pacific white shrimp Penaeus vannamei from Vibrio parahaemolyticus infection. Aquaculture and Fisheries. https://doi.org/10.1016/j.aaf.2023.05.003.

Habib, Y. J., Wan, H., Sun, Y., Shi, J., Yao, C., Lin, J., Ge, H., Wang, Y., & Zhang, Z. (2021). Genome-wide identification of toll-like receptors in Pacific white shrimp (Litopenaeus vannamei) and expression analysis in response to Vibrio parahaemolyticus invasion. Aquaculture, 532, 735996. https://doi.org/10.1016/j.aquaculture.2020.735996.

Hamsah, H., Widanarni, W., Alimuddin, A., Yuhana, M., & Junior, M. Z. (2017). The nutritional value of Artemia sp. enriched with probiotic Pseudoalteromonas piscicida and the prebiotic mannan oligosaccharide. AACL Bioflux, 10, 8-17.

Hamsah, H., Widanarni, W., Alimuddin, A., Yuhana, M., Junior, M. Z., & Hidayatullah, D. (2019). Immune response and resistance of pacific white shrimp larvae administered probiotic, prebiotic, and synbiotic through the bioencapsulation of Artemia sp.. Aquaculture International, 27 (2), 1-14. https://doi.org/10.1007/s10499-019-00346-w.

He, H., Abakari, G., Tan, H., Liu, W., & Luo, G. (2023). Effects of different probiotics (Bacillus subtilis) addition strategies on a culture of Litopenaeus vannamei in biofloc technology (BFT) aquaculture system. Aquaculture, 566, 1-10. https://doi.org/10.1016/j.aquaculture.2022.739216.

Ji, P. F., Yao, C. L., & Wang, Z. Y. (2009). Immune response and gene expression in shrimp (Litopenaeus vannamei) hemocytes and hepatopancreas against some pathogen-associated molecular patterns. Fish and Shellfish Immunology, 27, 563-570. https://doi.org/10.1016/j.fsi.2009.08.001.

Khoa, T. N., Tao, C. T., Van, V., Khanh, L., & Hai, T. N. (2020). Super-intensive culture of white leg shrimp (Litopenaeus vannamei) in outdoor biofloc systems with different sunlight exposure levels: emphasis on commercial applications. Aquaculture, 524, 735-277. https://doi.org/10.1016/j.aquaculture.2020.735277.

Kim, S. K., Pang, Z., Seo, H. C., Cho, Y. R., Samocha, T., & Jang, I. K. (2014). Effect of bioflocs on growth and immune activity of Pacific white shrimp, Litopenaeus vannamei post larvae. Aquaculture Research, 45, 362-371. https://doi.org/10.1111/are.12319.

[KKP] Kementrian Kelautan Perikanan. (2022). Marine and fisheries data release for the first quarter of 2022. Jakarta (ID): Center for Data, Statistics, and Information.

Kulkarni, A., Krishnan, S., Anand, D., Uthaman, S. K., Otta, S. K., Karunasagar, I., & Kooloth, V. R. (2021). Immune responses and immunoprotection in crustaceans with special reference to shrimp. Reviews in Aquaculture, 13, 431-459. https://doi.org/10.1111/raq.12482.

Kumar, B. K., Deekshit, V. K., Raj, J. M., Rai, P., Shivanagowda, B. M., Karunasagar, I., & Karunasagar, I. (2014). Diversity of Vibrio parahaemolyticus associated with disease outbreak among cultured Litopenaeus vannamei (pacific white shrimp) in India. Aquaculture, 433, 247-251. https://doi.org/10.1016/j.aquaculture.2014.06.016.

Kumar, V. S., Pandey, P. K., Anand, T., Bhuvaneswari, G. R., Dhinakaran, A., & Kumar, S. (2018). Biofloc improves water, effluent quality and growth parameters of Penaeus vannamei in an intensive culture system. Environmental Management, 215, 206-215. https://doi.org/10.1016/j.jenvman.2018.03.015.

Kumar, V., Wille, M., Lourenço, T. M., & Bossier, P. (2020). Biofloc-based enhanced survival of Litopenaeus vannamei upon AHPND-causing Vibrio parahaemolyticus challenge is partially mediated by reduced expression of its virulence genes. Front Microbiology, 11, 1-12. https://doi.org/10.3389/fmicb.2020.01270.

Lai, H. C., Ng, T. H., Ando, M., Lee, C. T., Chen, I. T., Chuang, J. C., Mavichack, R., Chang, S. H., Yeh, M. D., Chiang, Y. A., Takeyama, H., Hamaguchi, H., Lo, C. F., Aoki, T., & Wang, H. C. (2015). Pathogenesis of acute hepatopancreatic necrosis disease (AHPND) in shrimp. Fish and Shellfish Immunology, 47(2), 1006-1014. https://doi.org/10.1016/j.fsi.2015.11.008.

Liu, C. H., & Chen, J. C. (2004). Effect of ammonia on the immune response of white shrimp (Litopenaeus vannamei) and susceptibility to Vibrio alginolyticus. Fish and Shellfish Immunology, 16, 321-334. https://doi.org/10.1016/S1050-4648(03)00113-X.

Liu, K. F., Chiu, C. H., Shiu, Y. L., Cheng, W., & Liu, C. H. (2010). Effects of the probiotic, Bacillus subtilis e20, on the survival, development, stress tolerance, and immune status of white shrimp, Litopenaeus vannamei larvae. Fish and Shellfish Immunology, 28, 837-844. https://doi.org/10.1016/j.fsi.2010.01.012.

Liu, G., Zhu, S., Liu, D., Guo, X., & Ye, Z. (2017). Effects of stocking density of the white shrimp Litopenaeus vannamei (boone) on immunities, antioxidant status, and resistance against Vibrio harveyi in a biofloc system. Fish and Shellfish Immunology, 67, 19-26. https://doi.org/10.1016/j.fsi.2017.05.038.

Madigan, M. T., Martinko, J. M., Stahl, D. A., & Clark, D. P. (2012). Brock biology of microorganisms, 13th edition. San Francisco (US): Benjamin Cummings.

Munaeni, W., Widanarni, W., Yuhana, M., Setiawati, M., & Wahyudi, A. T. (2020). The potential of buton forest onion Eleutherine bulbosa (mill.) urb. extract as a prebiotic and an antioxidant. Journal of Microbiology, Biotechnology and Food Sciences, 10 (1), 107-111. https://doi.org/10.15414/jmbfs.2020.10.1.107-111.

Nababan, Y. I., Yuhana, M., Penataseputro, T., Nasrullah, H., Alimuddin, A., &

Widanarni, W. (2022). Dietary supplementation of Pseudoalteromonas piscicida 1UB and fructooligosaccharide enhance growth performance and protect the whiteleg shrimp (Litopenaeus vannamei) against WSSV and Vibrio harveyi coinfection. Fish and Shellfish Immunology, 131, 746-756. https://doi.org/10.1016/j.fsi.2022.10.047.

Offret, C., Desriac, F., Chevalier, P., Mounier, J., Jégou, C., & Fleury, Y. (2016). Spotlight on antimicrobial metabolites from the marine bacteria Pseudoalteromonas: chemodiversity and ecological significance. Marine drugs, 14, 129. https://doi.org/10.3390/md14070129.

Pardede, M. A., Widanarni, W., Sukenda, S., & Yuhana, M. (2023). Evaluation of dietary microencapsulated synbiotics Pseudoalteromonas piscicida 1UB, Bacillus NP5, and mannan-oligosaccharides to prevent Vibrio parahaemolyticus infec-tion in Pacific white shrimp Penaeus vannamei. Aquaculture International, 32, 2077-2091. https://doi.org/10.1007/s10499-023-01258-6.

PERMEN-KP. (2019). Regulation of the minister of marine affairs and fisheries on fish medicine. Jakarta: Minister of Marine Affairs and Fisheries of Indonesia.

Raja, R. A., Sridhar, R. C., Balacandran, A., Palanisammi, S., Ramesh, R., & Nagarajan, K. (2017). Pathogenicity profile of Vibrio parahaemolyticus in farmed pacific white shrimp. Fish and Shellfish Immunology, 67, 365-81. https://doi.org/10.1016/j.fsi.2017.06.020.

Ramadhani, D. E., Widanarni, W., & Sukenda, S. (2019). Microencapsulation of probiotics and its applications with prebiotic in Pacific white shrimp larvae through Artemia sp. Indonesian Aquaculture Journal, 18, 130-140. https://doi.org/10.19027/jai.18.2.130-140.

Reed, L. J., & Muench, H. (1938). A simple method of estimating fifty per cent endpoints. Journal of Hygiene, 27 (3), 493-497. https://doi.org/10.1093/oxfordjournals.aje.a118408.

Richards, G. P., Watson, M. A., Needleman, D. S., Uklanis, J., Boyd, E. F., & Fay, J. P. (2017). Mechanisms for Pseudoalteromonas piscicida-induced killing of vibrios and other bacterial pathogens. Environmental Microbiology, 83(11), 1-17. https://doi.org/10.1128/AEM.00175-17.

Rodriguez, J., & Moullac, G. L. (2000). State of the art of immunological tools and health control of penaeid shrimp. Aquaculture, 191 (1), 109-119. https://doi.org/10.1016/S0044-8486(00)00421-X.

Suleman, S., Sri, A., & Ating, Y. (2019). Potential of Ulva lactuca crude extract in increasing total haemocyte count (THC) and phagocytosis activity in vannamei shrimp (Litopenaeus vannamei). Journal of Fisheries Science, 10 (1), 1-7. https://doi.org/10.35316/jsapi.v10i1.230.

Tassanakajon, A., Somboonwiwat, K., Supungul, P., & Tang, S. (2013). Discovery of immune molecules and their crucial functions in shrimp immunity. Fish Shellfish Immunol. 34, 954-967. https://doi.org/10.1016/j.fsi.2012.09.021.

Toledo, T. M., Silva, B. C., Vieira, F. N., Mouriño, J. P., & Seiffert, W. Q. (2016). Effects of different dietary lipid levels and fatty acids profiles in the culture of white shrimp Litopenaeus vannamei (Boone) in biofloc technology: water quality, biofloc composition, growth and health. Aquaculture Research, 47, 1841-1851. https://doi.org/10.1111/are.12642.

Tran, L., Nunan, L., Redman, R. M., Mohney, L. L., Pantoja, C. R., Fitzsimmons, K., & Lightner, D. V. (2013). Determination of the infectious nature of the agent of acute hepatopancreatic necrosis syndrome affecting penaeid shrimp. Diseases of Aquatic Organisms, 105(1), 45-55. https://doi.org/10.3354/dao02621.

Wang, H., Wang, C., Tang, Y., Sun, B., Huang, J., & Song, X. (2018). Pseudoalteromonas probiotics as potential biocontrol agents improve the survival of Penaeus vannamei challenged with acute hepatopancreatic necrosis disease (AHPND)-causing Vibrio parahaemolyticus. Aquaculture, 494, 30-36. https://doi.org/10.1016/j.aquaculture.2018.05.020.

Wang, A., Ran, C., Wang, Y., Zhang, Z., Ding, Q., Yang, Y., Olsen, R. E., Ringo, E., Bindelle, J., & Zhou, Z. (2019). Use of probiotics in aquaculture of China-a review of the past decade. Fish and Shellfish Immunology, 86, 734-755. https://doi.org/10.1016/j.fsi.2018.12.026.

Wang, H. C., Lin, S. J., Mohapatra, A., Kumar, R., & Wang, H. C. (2020). A review of the functional annotations of important genes in the AHPND-causing pVA1 plasmid. Microorganisms, 8, 996. https://doi.org/10.3390/microorganisms8070996.

Watts, J. E., Schreier, H. J., Lanska, L., & Hale, M. S. (2017). The rising tide of antimicrobial resistance in aquaculture: sources, sinks and solutions. Marine Drugs, 15, 158. https://doi:10.3390/md15060158.

Wei, Y., Liao, S. A., & Wang, A. L. (2016). The effect of different carbon sources on the nutritional composition, microbial community and structure of bioflocs. Aquaculture, 465, 88-93. https://doi.org/10.1016/j.aquaculture.2016.08.040.

Wicaksono, B. A., Dwinanti, S. H., & Hadi, P. (2020). Population control of Vibrio sp. green colony bacteria in vannamei shrimp (Litopenaeus vannamei) rearing using papaya (Carica papaya L) leaf extract. Intek Aquaculture, 4(1), 12-23. https://doi.org/10.31629/intek.v4i1.1536.

Widanarni, W., Tepu, I., Sukenda, S., & Setiawati, M. (2009). Selection of probiotic bacteria for biocontrol of vibriosis in tiger shrimp larvae, Penaeus monodon using co-culture. Journal of Aquaculture Research and Technology, 4 (1), 95-105. http://dx.doi.org/10.15578/jra.4.1.2009.95-105.

Wolf, J. C., Baumgartner, W. A., Blazer, V. S., Camus, A. C., Engelhardt, J. A., Fournie, J. W., & Wolfe, M. J. (2015). Nonlesions, misdiagnoses, missed diagnoses, and other interpretive challenges in fish histopathology studies: a guide for investigators, authors, reviewers, and readers. Toxicologic pathology, 43(3), 297-325. https://doi.org/10.1177/0192623314540229.

Yang, Q., Tan, B., Dong, X., Chi, S., & Liu, H. (2015). Effects of different levels of Yucca schidigera extract on the growth and non-specific immunity of Pacific white shrimp (Litopenaeus vannamei) and on culture water quality. Aquaculture, 439, 39-44. https://doi.org/10.1016/j.aquaculture.2014.11. 029.

Yang, C. C., Lu, C. L., Chen, S., Liao, W. L., & Chen, S. N. (2015). Immune gene expression for diverse haemocytes derived from pacific white shrimp, Litopenaeus vannamei. Fish and Shellfish Immunol. 44, 265-271. https://doi.org/10.1016/j.fsi.2015.02.001.

Yuhana, M., & Afiff, U. (2023). Mini-review: Utilization of Vibrio parahaemolyticus virulence coding genes for early detection of acute hepatopancreatic necrosis disease (AHPND). Jurnal Akuakultur Indonesia, 22ý, 87-96. https://doi.org/10.19027/jai.22.1.87-96.

Yuhana, M., Asvia, S., Widanarni, W., & Afiff, U. (2024). Improvement in growth, enzyme activity, and gene expression against Edwardsiellosis in African catfish (Clarias sp.) with dietary supplementation of euryhaline probiotic and paraprobiotic Bacillus cereus BR2. Aquaculture International. https://doi.org/10.1007/s10499-024-01617-x.

Zhang, B., Li, W., Guo, Y., Zhang, Z., Shi, W., Cui, F., Lens, P. L., & Tay, J. H. (2020). Microalgal-bacterial consortia: from interspecies interactions to biotechnological applications. Renewable and Sustainable Energy Reviews, 118, 1-20. https://doi.org/10.1016/j.rser.2019.109563.

Zokaeifar, H., Balcazar, J. L., Saad, C. R., Kamarudin, M. S., Sijam, K., Arshad, A., & Nejat, N. (2012). Effects of Bacillus subtilis on the growth performance, digestive enzymes, immune gene expression and disease resistance of white shrimp (Litopenaeus vannamei). Fish and Shellfish Immunology, 33 (4), 683-689. https://doi.org/10.1016/j.fsi.2012.05.027.




DOI: http://dx.doi.org/10.15578/iaj.20.1.2025.59-73

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Creative Commons License
Indonesian Aquaculture Journal is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats
p-ISSN: 0215-0883
e-ISSN: 2502-6577

 

Hasil gambar untuk isjd