ENHANCING PROTEIN UTILIZATION AND GROWTH PERFORMANCE IN STRIPED CATFISH WITH CINNAMALDEHYDE AND OPTIMIZED ENERGY-TO-PROTEIN RATIOS

Imam Tri Wahyudi, Dedi Jusadi, Mia Setiawati, Julie Ekasari, Muhammad Agus Suprayudi, Mohamad Iqbal Kurniawinata, Ainulyakin Hasan Imlani

Abstract


Efficient dietary protein utilization is essential to reduce feed costs and environmental impacts in sustainable aquaculture. This study aimed to evaluate the effects of cinnamaldehyde (CA) supplementation in feed with various energy-to-protein (E:P) ratios on the chemical composition of Pangasianodon hypophthalmus. The five feed formulas that made up the treatment feed were as follows: 28:13-C0 (28 % Protein with an E:P ratio of 13 and CIN 0 g kg-1); 25:14-C1 (25 % protein with an E:P ratio of 14 and CIN 1.2 g kg-1); 25:14-C2 (25 % protein with an E:P ratio of 14 and CIN 1.7 g kg-1); 25:15-C1 (25 % protein with an E:P ratio of 15 and CIN 1.2 g kg-1); and 25:15-C2 (25 % Protein with an E:P ratio of 15 and CIN 1.7 g kg-1). Striped catfish weighing 28.06 ± 0.19 g were placed in a hapa (2 × 1 × 1 m3) at a density of 25 fish per cage. Fish were fed to apparent satiation three times daily for 60 d. The 25:14-C2, 25:15-C1, and 25:15-C2 diets increased albumin levels and reduced cholesterol, while 25:15-C2 also yielded the highest total protein and lowest triglyceride levels. Growth performance and feed efficiency were comparable among 28:13-C0, 25:14-C2, 25:15-C1, and 25:15-C2 (final weight: 141.62–143.75 g; FCR: 1.16–1.19). Protein efficiency ratio was highest in 25:15-C1 and 25:15-C2, whereas protein retention peaked in 25:14-C2. The hepatosomatic index was elevated in 25:14-C1, 25:14-C2, and 25:15-C1. Body lipid content was highest in 25:15-C1, while muscle lipid content was lowest in 25:14-C2 and 25:15-C1. Reducing dietary protein from 28 % to 25 % did not compromise growth performance at the E:P ratio level of 15 with a supplementation of 1.2 g kg-1 CIN.

Keywords


cinnamaldehyde; energy-to-protein ratio; growth; protein-sparing effect; striped catfish

Full Text:

PDF

References


Abd El-Hamid, M. I., Ibrahim, S. M., Eldemery, F., El-Mandrawy, S. A. M., Metwally, A. Sh., Khalifa, E., Elnahriry, S. S., & Ibrahim, D. (2021). Dietary cinnamaldehyde nanoemulsion boosts growth and transcriptomes of antioxidant and immune related genes to fight Streptococcus agalactiae infection in Nile tilapia (Oreochromis niloticus). Fish & Shellfish Immunology, 113, 96–105. https://doi.org/10.1016/j.fsi.2021.03.021

Alam, M. S., Liang, X.-F., & Liu, L. (2020). Indirect effect of different dietary protein to energy ratio of bait fish mori diets on growth performance, body composition, nitrogen metabolism and relative AMPK & mTOR pathway gene expression of Chinese perch. Aquaculture Reports, 16, 100276. https://doi.org/10.1016/j.aqrep.2020.100276

Ali, Z., Paul, M., Jana, P., Rahman, K., & Mahmud, Y. (2018). Optimization of dietary protein to energy ratio (P/E ratio) for Sutchi catfish, Pangasianodon hypophthalmus (Sauvage, 1878) fingerlings. Journal of Entomology and Zoology Studies, 6(5), 2162–2167.

Amer, S. A., Metwally, A. E., & Ahmed, S. A. A. (2018). The influence of dietary supplementation of cinnamaldehyde and thymol on the growth performance, immunity and antioxidant status of monosex Nile tilapia fingerlings (Oreochromis niloticus). The Egyptian Journal of Aquatic Research, 44(3), 251–256. https://doi.org/10.1016/j.ejar.2018.07.004

AOAC. (2012). Official Methods of Analysis of AOAC International (Ed ke-19). AOAC International.

Asemani, M., Sepahdari, A., Pourkazemi, M., Hafezieh, M., Aliyu Paiko, M., & Dadgar, S. (2019). Effect of different sources and forms of dietary carbohydrates on growth performance, body indices and lipogenesis activity of striped catfish Pangasianodon hypophthalmus fingerlings. Aquaculture Nutrition, 25(6), 1399–1409. https://doi.org/10.1111/anu.12960

Barange, M., Bahri, T., Beveridge, M. C. M., Cochrane, K. L., Funge-Smith, S. & P., & F., eds. (2018). Impacts of climate change on fisheries and aquaculture: Synthesis of current knowledge, adaptation and mitigation options. FAO.

Chen, Z., Jing, F., Lu, M., Su, C., Tong, R., & Pan, L. (2022). Effects of dietary trans-cinnamaldehyde on growth performance, lipid metabolism, immune response and intestinal microbiota of Litopenaeus vannamei. Fish & Shellfish Immunology, 131, 908–917. https://doi.org/10.1016/j.fsi.2022.11.008

Da, C. T., Hung, L. T., Berg, H., Lindberg, J. E., & Lundh, T. (2013). Evaluation of potential feed sources, and technical and economic considerations of small-scale commercial striped catfish ( P angasius hypothalamus ) pond farming systems in the Mekong Delta of Vietnam. Aquaculture Research, 44(3), 427–438. https://doi.org/10.1111/j.1365-2109.2011.03048.x

FAO. (2022). The State of World Fisheries and Aquaculture 2022. FAO. https://doi.org/10.4060/cc0461en

García-Meilán, I., Valentín, J. M., Fontanillas, R., & Gallardo, M. A. (2013). Different protein to energy ratio diets for gilthead sea bream (Sparus aurata): Effects on digestive and absorptive processes. Aquaculture, 412–413, 1–7. https://doi.org/10.1016/j.aquaculture.2013.06.031

Green, J. A., & Hardy, R. W. (2008). The effects of dietary protein:energy ratio and amino acid pattern on nitrogen utilization and excretion of rainbow trout Oncorhynchus mykiss (Walbaum). Journal of Fish Biology, 73(3), 663–682. https://doi.org/10.1111/j.1095-8649.2008.01965.x

Gu, Y., Han, J., Wang, W., Zhan, Y., Wang, H., Hua, W., Liu, Y., Guo, Y., Xue, Z., & Wang, W. (2022). Dietary cinnamaldehyde enhances growth performance, digestion, immunity, and lipid metabolism in juvenile fat greenling (Hexagrammos otakii). Aquaculture Nutrition, 2022, 1–12. https://doi.org/10.1155/2022/2132754

Hardy, R. W., & Kaushik, S. J. (2022). Fish Nutrition (4th ed.). Academic Press.

Hendriana, A., Setiawati, M., Jusadi, D., Suprayudi, M. A., Ekasari, J., & Wahjuningrum, D. (2023). Evaluation of the administration of cinnamaldehyde to feed on the growth performance and carbohydrate metabolism of Pacific whiteleg shrimp (Litopenaeus vannamei). AACL Bioflux, 16(5), 2660–2670.

Hudecová, K., & Rajèániová, M. (2023). The impact of geopolitical risk on agricultural commodity prices. Agricultural Economics (Zemìdìlská Ekonomika), 69(4), 129–139. https://doi.org/10.17221/374/2022-AGRICECON

Imlani, A. H., Jusadi, D., Suprayudi, M. A., Ekasari, J., Fauzi, I. A., Guinto-Sali, M. J., & Wahyudi, I. T. (2024). Evaluation of the effects of dietary cinnamaldehyde on growth and nutrient use in Nile Tilapia (Oreochromis niloticus). Aquaculture Reports, 36, 102125. https://doi.org/10.1016/j.aqrep.2024.102125

Kamalam, B. S., Medale, F., & Panserat, S. (2017). Utilisation of dietary carbohydrates in farmed fishes: New insights on influencing factors, biological limitations and future strategies. Aquaculture, 467, 3–27. https://doi.org/10.1016/j.aquaculture.2016.02.007

Kim, K., Kim, K., Han, H. S., Moniruzzaman, M., Yun, H., Lee, S., & Bai, S. C. (2017). Optimum Dietary Protein Level and Protein to energy Ratio for Growth of Juvenile Parrot Fish, Oplegnathus fasciatus. Journal of the World Aquaculture Society, 48(3), 467–477. https://doi.org/10.1111/jwas.12337

Lehninger, A. L., Nelson, D. L., & Cox, M. M. (2008). Principles of Biochemistry (5th ed). W.H. Freeman.

Luo, Y., Hu, C.-T., Qiao, F., Wang, X.-D., Qin, J. G., Du, Z.-Y., & Chen, L.-Q. (2020). Gemfibrozil improves lipid metabolism in Nile tilapia Oreochromis niloticus fed a high-carbohydrate diet through peroxisome proliferator activated receptor-á activation. General and Comparative Endocrinology, 296, 113537. https://doi.org/10.1016/j.ygcen.2020.113537

National Research Council (Ed.). (2011). Nutrient Requirements of Fish and Shrimp. National Academies Press.

Ngoc, P. T., Gaitán-Cremaschi, D., Meuwissen, M. P. M., Le, T. C., Bosma, R. H., Verreth, J., & Lansink, A. O. (2018). Technical inefficiency of Vietnamese pangasius farming: A data envelopment analysis. Aquaculture Economics & Management, 22(2), 229–243. https://doi.org/10.1080/13657305.2017.1399296

Nguyen, T. A. T., Nguyen, Q. T. T., Tran, T. C., Nguyen, K. A. T., & Jolly, C. M. (2023). Balancing the aquatic export supply chain strategy- A case study of the Vietnam pangasius industry. Aquaculture, 566, 739139. https://doi.org/10.1016/j.aquaculture.2022.739139

Orban, E., Nevigato, T., Lena, G. D., Masci, M., Casini, I., Gambelli, L., & Caproni, R. (2008). New trends in the seafood market sutchi catfish (Pangasius hypophthalmus) fillets from Vietnam: Nutritional quality and safety aspects. Food Chemistry, 110(2), 383–389. https://doi.org/10.1016/j.foodchem.2008.02.014

Poernomo, N., Utomo, N. B. P., & Azwar, Z. I. (2015). The growth and meat quality of Siamese catfish fed different level of protein. Jurnal Akuakultur Indonesia, 14(2), 104-111. https://doi.org/10.19027/jai.14.104-111.

Salmerón, C. (2018). Adipogenesis in fish. Journal of Experimental Biology, 221(Suppl_1), jeb161588. https://doi.org/10.1242/jeb.161588

Setiawati, M., Jusadi, D., Laheng, S., Suprayudi, M. A., & Vinasyiam, A. (2016). The enhancement of growth performance and feed efficiency of Asian catfish, Pangasianodon hypophthalmus fed on Cinnamomum burmannii leaf powder and extract as nutritional supplementation. AACL Bioflux, 9(6).

Teles, A. O., Couto, A., Enes, P., & Peres, H. (2020). Dietary protein requirements of fish – a meta analysis. Reviews in Aquaculture, 12(3), 1445–1477. https://doi.org/10.1111/raq.12391

Varner, W. (2000). Anesthetics. In R. R. Stickney (Ed.), Encyclopedia of Aquaculture (pp. 33–38). John Wiley 439 & Sons, Inc.

Wahyudi, I. T., Jusadi, D., Setiawati, M., & Ekasari, J. (2023a). Effects of dietary supplementation with cinnamon powder and lysine on blood chemistry, liver histology, growth performance, and fillet quality of striped catfish Pangasianodon hypophthalmus. Aquaculture International, 31(6), 3513–3529. https://doi.org/10.1007/s10499-023-01141-4

Wahyudi, I. T., Jusadi, D., Setiawati, M., Ekasari, J., & Suprayudi, M. A. (2023b). Suplementasi l-karnitin dan kayu manis pada pakan terhadap penurunan lemak dan tekstur filet ikan patin Pangasianodon hypophthalmus pada fase pembesaran. Jurnal Riset Akuakultur, 18(1), 1–14. https://doi.org/10.15578/jra.18.1.2023.1-14

Wahyudi, I. T., Jusadi, D., Setiawati, M., Ekasari, J., & Suprayudi, M. A. (2024). Dietary supplementation of cinnamaldehyde positively affects the physiology, feed utilization, growth, and body composition of striped catfish Pangasianodon hypophthalmus. Fish Physiology and Biochemistry, 50. https://doi.org/10.1007/s10695-023-01287-1

Wang, J. T., Han, T., Li, X. Y., Yang, Y. X., Yang, M., Hu, S. X., Jiang, Y. D., & Harpaz, S. (2017). Effects of dietary protein and lipid levels with different protein-to-energy ratios on growth performance, feed utilization and body composition of juvenile red-spotted grouper, Epinephelus akaara. Aquaculture Nutrition, 23(5), 994–1002. https://doi.org/10.1111/anu.12467

Watanabe, T. (1998). Fish Nutrition and Mariculture. Japan International Cooperation Agency.

Webster, C. D., & Lim, C. (Eds.). (2002). Nutrient Requirements and Feeding of Finfish for Aquaculture. CABI. https://doi.org/10.1079/9780851995199.0000

Wen, C., Ma, S., Tian, H., Jiang, W., Jia, X., Zhang, W., Jiang, G., Li, X., Chi, C., He, C., Liu, W., & Zhang, D. (2022). Evaluation of the protein-sparing effects of carbohydrates in the diet of the crayfish, Procambarus clarkii. Aquaculture, 556, 738275. https://doi.org/10.1016/j.aquaculture.2022.738275

Xu, C., Liu, W.-B., Remø, S. C., Wang, B.-K., Shi, H.-J., Zhang, L., Liu, J.-D., & Li, X.-F. (2019). Feeding restriction alleviates high carbohydrate diet-induced oxidative stress and inflammation of Megalobrama amblycephala by activating the AMPK-SIRT1 pathway. Fish & Shellfish Immunology, 92, 637–648. https://doi.org/10.1016/j.fsi.2019.06.057

Zhou, Y., Wu, P., Jiang, W.-D., Liu, Y., Peng, Y., Kuang, S.-Y., Tang, L., Li, S.-W., Feng, L., & Zhou, X.-Q. (2023). Dietary cinnamaldehyde improves muscle protein content by promoting muscle fiber growth via PTP1B/IGF1/PI3K/AKTs-TOR/FOXO3a signaling pathway in grass carp (Ctenopharyngodon idella). Food Chemistry, 399, 133799. https://doi.org/10.1016/j.foodchem.2022.133799




DOI: http://dx.doi.org/10.15578/iaj.20.2.2025.221-230

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Creative Commons License
Indonesian Aquaculture Journal is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats
p-ISSN: 0215-0883
e-ISSN: 2502-6577

 

Hasil gambar untuk isjd