IMPACT OF PROTEIN AND PROBIOTIC SUPPLEMENTATION ON IMMUNITY AND SURVIVAL OF Clarias gariepinus UNDER PATHOGEN CHALLENGE IN AQUACULTURE
Abstract
Keywords
Full Text:
PDFReferences
Abu Bakar, A., MohdRasol, R., Yahaya, N., Noor, N. M., & bin Mohd Ali, M. K. F. (2015). Turbidity method to measure the growth of anaerobic bacteria related to microbiologically influenced corrosion. Solid State Phenomena, 227, 298–301.
Ahmed, A. O., Aremu, A. O., & Akinmoladun, O. O. (2023).Diagnosis of toxic stress induced by Pseudomonas aeruginosa infection in juvenile Clarias gariepinus. Egyptian Journal of Aquatic Biology & Fisheries, 27(2), 1–14. https://doi.org/10.21608/ejabf.2023.305592
Ali, M. R., Basharat, H., Ahmed, A., Fakhar, M., & Khan, A. (2024). Determination of optimum dietary crude protein requirement for maximum growth of African catfish (Clarias gariepinus). Sarhad Journal of Agriculture, 40(2), 595–602.
Caruso, L., Mellini, M., Catalano Gonzaga, O., Astegno, A., Forte, E., Di Matteo, A., &Rampioni, G. (2024). Hydrogen sulfide production does not affect antibiotic resistance in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 68(4), e00075-24.
Chávarri, M., Diez-Gutiérrez, L., Marañón, I., & Barron, L. J. R. (2021). Secondary metabolites from probiotic metabolism. In Advances in Probiotics (pp. 259–276). Academic Press.
Dennis, E., & Uchenna, O. (2016). Use of probiotics as first feed of larval African catfish Clarias gariepinus (Burchell 1822). Annual Research & Review in Biology, 9(2), 1–9.
Derome, N., Gauthier, J., Boutin, S., & Llewellyn, M. (2016). The rasputin effect: When commensals and symbionts become parasitic. In Advances in Environmental Microbiology. https://doi.org/10.1007/978-3-319-28170-4
El-Bahar, H. M., Ali, N. G., Aboyadak, I. M., Khalil, S. A. E. S., & Ibrahim, M. S. (2019). Virulence genes contributing to Aeromonas hydrophila pathogenicity in Oreochromis niloticus. International Microbiology, 22, 479–490.
El-Gamal, S. M. A., Abo-El-Enein, S. A., El-Hosiny, F. I., Amin, M. S., & Ramadan, M. (2018). Thermal resistance, microstructure and mechanical properties of type I Portland cement pastes containing low-cost nanoparticles. Journal of Thermal Analysis and Calorimetry, 131, 949–968.
Fakhri, M., Ekawati, A. W., Arifin, N. B., Yuniarti, A., &Hariati, A. M. (2019). Effect of probiotics on survival rate and growth performance of Clarias gariepinus. Nature Environment and Pollution Technology, 18(1), 313–316.
Fiedler, S., Huber, S., & Müller, R. (2023). Tissue sampling guidelines for histological examination of rainbow trout (Oncorhynchus mykiss). Journal of Fish Biology, 102(2), 123–135. https://doi.org/10.1111/jfb.15567
Food and Agriculture Organization (FAO). (2022). The state of world fisheries and aquaculture 2022: Towards blue transformation. FAO. https://doi.org/10.4060/cc0461en
Hall, S., McDermott, C., Anoopkumar-Dukie, S., McFarland, A. J., Forbes, A., Perkins, A. V., ... & Davey, A. K. (2016). Cellular effects of pyocyanin, a secreted virulence factor of Pseudomonas aeruginosa. Toxins, 8(8), 236. https://doi.org/10.3390/toxins8080236
Hamed, S. B., Ranzani-Paiva, M. J. T., Tachibana, L., de Carla Dias, D., Ishikawa, C. M., & Esteban, M. A. (2018). Fish pathogen bacteria: Adhesion, parameters influencing virulence and interaction with host cells. Fish & Shellfish Immunology, 80, 550–562.
Hassan, M., Melad, A. N., Zakariah, M. I., & Yusoff, N. A. H. (2023). Histopathological alterations in gills, liver and kidney of African catfish (Clarias gariepinus, Burchell 1822) exposed to Melaleuca cajuputi extract. Tropical Life Sciences Research, 34(2), 177.
Hoseinifar, S. H., Faheem, M., Liaqat, I., Van Doan, H., Ghosh, K., & Ringø, E. (2024). Promising probiotic candidates for sustainable aquaculture: An updated review. Animals, 14(24), 3644. https://doi.org/10.3390/ani14243644
Hussein, M. A., El-Tahlawy, A. S., Abdelmoneim, H. M., Abdallah, K. M., & El Bayomi, R. M. (2023). Pseudomonas aeruginosa in fish and fish products: A review on the incidence, public health significance, virulence factors, antimicrobial resistance, and biofilm formation. Journal of Advanced Veterinary Research, 13(7), 1464–1468.
Irshath, A. A., Rajan, A. P., Vimal, S., Prabhakaran, V. S., & Ganesan, R. (2023). Bacterial pathogenesis in various fish diseases: Recent advances and specific challenges in vaccine development. Vaccines, 11(2), 470.
Li, T., Long, M., Gatesoupe, F.-J., Zhang, Q., Li, A., & Gong, X. (2020). Comparative analysis of the intestinal microbiota composition and gene expression in juvenile Nile tilapia (Oreochromis niloticus) fed diets supplemented with different probiotics. Aquaculture, 526, 735422. https://doi.org/10.1016/j.aquaculture.2020.735422
Li, X., Li, J., Liu, H., Wang, J., & Ma, X. (2020). Effects of probiotics on nitrogen cycling and water quality in aquaculture. Aquaculture Environment Interactions, 12, 19–32.
Maftuch, M., Sari, A. R., & Suryani, N. (2017). Histopathology of gill, muscle, intestine, kidney, and liver on Myxobolus sp.-infected koi carp (Cyprinus carpio). Indonesian Aquaculture Journal, 12(1), 1–8. https://doi.org/10.15578/iaj.12.1.2017.1-8
Maldonado-Gómez, M. X., Martinez, I., Bottacini, F., O’Callaghan, A., Ventura, M., van Sinderen, D., & Walter, J. (2016). Stable engraftment of Bifidobacterium longum in the human gut depends on individualized features of the resident microbiome. Cell Host & Microbe, 20(4), 515–526. https://doi.org/10.1016/j.chom.2016.09.001
Manchanayake, T., Ina-Salwany, M. Y., & Zamri-Saad, M. (2023). Pathology and pathogenesis of Vibrio infection in fish: A review. Aquaculture Reports, 28, 101459. https://doi.org/10.1016/j.aqrep.2023.101459
Newaj Fyzul, A., & Austin, B. (2015). Probiotics, immunostimulants, plant products and oral vaccines, and their role as feed supplements in the control of bacterial fish diseases. Journal of fish diseases, 38(11), 937-955.
Nguyen, T. T., Lee, J. S., Lee, D. H., Nguyen, M. T., Kim, M. C., & Kim, C. H. (2021). Antimicrobial activities of probiotics against Pseudomonas aeruginosa. Journal of Aquatic Biology, 32(2), 154–162.
Obisesan, O. M., Oladosu, G. A., Adelakun, O. D., Ajibade, A. O., Adah, A. D., Oloko, A. B., &Bamigboye, O. F. (2022). Pathogenicity of Pseudomonas aeruginosa in reciprocal hybrids of Clarias gariepinus and Heterobranchusbidorsalis. Nigerian Journal of Fisheries, 19(2), 2510–2515.
Oladele, O. O., Olufemi, B. E., Ajayi, O. A., Ameji, S. N., &Ntiwunka, U. G. (2019). Studies on experimental pseudomoniasis and vibriosis in African catfish (Clarias gariepinus, Burchell, 1822). Vom Journal of Veterinary Science, 14(1), 60–74.
Ringø, E., Van Doan, H., Lee, S. H., Soltani, M., Hoseinifar, S. H., Harikrishnan, R., & Song, S. K. (2020). Probiotics, lactic acid bacteria and bacilli: interesting supplementation for aquaculture. Journal of applied microbiology, 129(1), 116-136.
Rodrigues, S., Antunes, S. C., & Correia, A. T. (2019). Histopathological effects in gills and liver of Sparus aurata following acute and chronic exposures to erythromycin and oxytetracycline. Environmental Science and Pollution Research, 26, 15481–15495. https://doi.org/10.1007/s11356-019-04954-0
Srivastava, P., Ramesh, M., Kaushik, P., Kumari, A., & Aggarwal, S. (2022). Pyocyanin pigment from Pseudomonas species: Source of a dye and antimicrobial textile. Proceedings of the Indian National Science Academy, 88, 542–550. https://doi.org/10.1007/s43538-022-00109-x
Strzy¿ewska, E., Szarek, J., & Babiñska, I. (2016). Morphologic evaluation of the gills as a tool in the diagnostics of pathological conditions in fish and pollution in the aquatic environment: A review. Veterinarni Medicina, 61, 123–132. https://doi.org/10.17221/8763-VETMED
Thippakorn, C., Isarankura-Na-Ayudhya, C., Pannengpetch, S., Isarankura-Na-Ayudhya, P., Schaduangrat, N., Nantasenamat, C., &Prachayasittikul, V. (2018). Oxidative responses and defense mechanism of hyperpigmented Pseudomonas aeruginosa as characterized by proteomics and metabolomics. EXCLI Journal, 17, 544.
Zada, L., Anwar, S., Imtiaz, S., Saleem, M., & Shah, A. A. (2024). In vitro study: Methylene blue-based antibacterial photodynamic inactivation of Pseudomonas aeruginosa. Applied Microbiology and Biotechnology, 108(1), 169.
DOI: http://dx.doi.org/10.15578/iaj.20.2.2025.185-195

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Aquaculture Journal is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.














_25.jpg)


