IMPACT OF PROTEIN AND PROBIOTIC SUPPLEMENTATION ON IMMUNITY AND SURVIVAL OF Clarias gariepinus UNDER PATHOGEN CHALLENGE IN AQUACULTURE

Firew Admasu, Mulugeta Wakjira, Tokuma Negisho Bayissa, Ketema Bacha

Abstract


Bacterial infections, particularly those caused by Pseudomonas aeruginosa, pose a threat to aquaculture and lead to economic losses in African catfish (Clarias gariepinus). This study evaluates the effects of dietary protein and probiotic supplementation on fish health, growth performance, and survival following P. aeruginosa infection, using both in vitro and in vivo approaches. The in vitro assays determined the infective dose of P. aeruginosa and its interactions with probiotics. At the same time, in vivo trials assessed survival, behavioral responses, feed utilization efficiency, and pathological changes over 72 hours. Furthermore, fish were fed varying protein levels (35%, 40%, and 45%) and probiotic concentrations (1:2:3 ratio) for two months before being challenged with bacteria. Higher protein (40–45%) and probiotic supplementation (2–3 mL) significantly improved survival rates (up to 83.33%), reduced weight loss, and mitigated organ damage as opposed to groups with lower supplementation (50% survival), though lower than the uninfected controls (100% survival). The improved survival and reduced pathological damage in probiotic-supplemented fish suggest a potential enhancement of immune defense mechanisms and overall physiological resilience. Probiotics have been reported to modulate immune responses by promoting beneficial microbiota, competing with pathogens, and supporting host immunity, which may contribute to the observed protective effects. Additionally, probiotic-fed groups exhibited improved water quality with lower accumulation of nitrogenous waste in infected tanks. These findings suggest that protein- and probiotic-enriched diets enhance disease resilience, feed efficiency, and water quality in aquaculture, supporting sustainable fish production through nutritional and health improvement. Future research is recommended to investigate immune-related biomarkers to better understand the immune-modulatory effects of these dietary interventions.

Keywords


African catfish, Immunity enhancement, Probiotic supplementation, Protein supplementation, Pseudomonas aeruginosa

Full Text:

PDF

References


Abu Bakar, A., MohdRasol, R., Yahaya, N., Noor, N. M., & bin Mohd Ali, M. K. F. (2015). Turbidity method to measure the growth of anaerobic bacteria related to microbiologically influenced corrosion. Solid State Phenomena, 227, 298–301.

Ahmed, A. O., Aremu, A. O., & Akinmoladun, O. O. (2023).Diagnosis of toxic stress induced by Pseudomonas aeruginosa infection in juvenile Clarias gariepinus. Egyptian Journal of Aquatic Biology & Fisheries, 27(2), 1–14. https://doi.org/10.21608/ejabf.2023.305592

Ali, M. R., Basharat, H., Ahmed, A., Fakhar, M., & Khan, A. (2024). Determination of optimum dietary crude protein requirement for maximum growth of African catfish (Clarias gariepinus). Sarhad Journal of Agriculture, 40(2), 595–602.

Caruso, L., Mellini, M., Catalano Gonzaga, O., Astegno, A., Forte, E., Di Matteo, A., &Rampioni, G. (2024). Hydrogen sulfide production does not affect antibiotic resistance in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 68(4), e00075-24.

Chávarri, M., Diez-Gutiérrez, L., Marañón, I., & Barron, L. J. R. (2021). Secondary metabolites from probiotic metabolism. In Advances in Probiotics (pp. 259–276). Academic Press.

Dennis, E., & Uchenna, O. (2016). Use of probiotics as first feed of larval African catfish Clarias gariepinus (Burchell 1822). Annual Research & Review in Biology, 9(2), 1–9.

Derome, N., Gauthier, J., Boutin, S., & Llewellyn, M. (2016). The rasputin effect: When commensals and symbionts become parasitic. In Advances in Environmental Microbiology. https://doi.org/10.1007/978-3-319-28170-4

El-Bahar, H. M., Ali, N. G., Aboyadak, I. M., Khalil, S. A. E. S., & Ibrahim, M. S. (2019). Virulence genes contributing to Aeromonas hydrophila pathogenicity in Oreochromis niloticus. International Microbiology, 22, 479–490.

El-Gamal, S. M. A., Abo-El-Enein, S. A., El-Hosiny, F. I., Amin, M. S., & Ramadan, M. (2018). Thermal resistance, microstructure and mechanical properties of type I Portland cement pastes containing low-cost nanoparticles. Journal of Thermal Analysis and Calorimetry, 131, 949–968.

Fakhri, M., Ekawati, A. W., Arifin, N. B., Yuniarti, A., &Hariati, A. M. (2019). Effect of probiotics on survival rate and growth performance of Clarias gariepinus. Nature Environment and Pollution Technology, 18(1), 313–316.

Fiedler, S., Huber, S., & Müller, R. (2023). Tissue sampling guidelines for histological examination of rainbow trout (Oncorhynchus mykiss). Journal of Fish Biology, 102(2), 123–135. https://doi.org/10.1111/jfb.15567

Food and Agriculture Organization (FAO). (2022). The state of world fisheries and aquaculture 2022: Towards blue transformation. FAO. https://doi.org/10.4060/cc0461en

Hall, S., McDermott, C., Anoopkumar-Dukie, S., McFarland, A. J., Forbes, A., Perkins, A. V., ... & Davey, A. K. (2016). Cellular effects of pyocyanin, a secreted virulence factor of Pseudomonas aeruginosa. Toxins, 8(8), 236. https://doi.org/10.3390/toxins8080236

Hamed, S. B., Ranzani-Paiva, M. J. T., Tachibana, L., de Carla Dias, D., Ishikawa, C. M., & Esteban, M. A. (2018). Fish pathogen bacteria: Adhesion, parameters influencing virulence and interaction with host cells. Fish & Shellfish Immunology, 80, 550–562.

Hassan, M., Melad, A. N., Zakariah, M. I., & Yusoff, N. A. H. (2023). Histopathological alterations in gills, liver and kidney of African catfish (Clarias gariepinus, Burchell 1822) exposed to Melaleuca cajuputi extract. Tropical Life Sciences Research, 34(2), 177.

Hoseinifar, S. H., Faheem, M., Liaqat, I., Van Doan, H., Ghosh, K., & Ringø, E. (2024). Promising probiotic candidates for sustainable aquaculture: An updated review. Animals, 14(24), 3644. https://doi.org/10.3390/ani14243644

Hussein, M. A., El-Tahlawy, A. S., Abdelmoneim, H. M., Abdallah, K. M., & El Bayomi, R. M. (2023). Pseudomonas aeruginosa in fish and fish products: A review on the incidence, public health significance, virulence factors, antimicrobial resistance, and biofilm formation. Journal of Advanced Veterinary Research, 13(7), 1464–1468.

Irshath, A. A., Rajan, A. P., Vimal, S., Prabhakaran, V. S., & Ganesan, R. (2023). Bacterial pathogenesis in various fish diseases: Recent advances and specific challenges in vaccine development. Vaccines, 11(2), 470.

Li, T., Long, M., Gatesoupe, F.-J., Zhang, Q., Li, A., & Gong, X. (2020). Comparative analysis of the intestinal microbiota composition and gene expression in juvenile Nile tilapia (Oreochromis niloticus) fed diets supplemented with different probiotics. Aquaculture, 526, 735422. https://doi.org/10.1016/j.aquaculture.2020.735422

Li, X., Li, J., Liu, H., Wang, J., & Ma, X. (2020). Effects of probiotics on nitrogen cycling and water quality in aquaculture. Aquaculture Environment Interactions, 12, 19–32.

Maftuch, M., Sari, A. R., & Suryani, N. (2017). Histopathology of gill, muscle, intestine, kidney, and liver on Myxobolus sp.-infected koi carp (Cyprinus carpio). Indonesian Aquaculture Journal, 12(1), 1–8. https://doi.org/10.15578/iaj.12.1.2017.1-8

Maldonado-Gómez, M. X., Martinez, I., Bottacini, F., O’Callaghan, A., Ventura, M., van Sinderen, D., & Walter, J. (2016). Stable engraftment of Bifidobacterium longum in the human gut depends on individualized features of the resident microbiome. Cell Host & Microbe, 20(4), 515–526. https://doi.org/10.1016/j.chom.2016.09.001

Manchanayake, T., Ina-Salwany, M. Y., & Zamri-Saad, M. (2023). Pathology and pathogenesis of Vibrio infection in fish: A review. Aquaculture Reports, 28, 101459. https://doi.org/10.1016/j.aqrep.2023.101459

Newaj Fyzul, A., & Austin, B. (2015). Probiotics, immunostimulants, plant products and oral vaccines, and their role as feed supplements in the control of bacterial fish diseases. Journal of fish diseases, 38(11), 937-955.

Nguyen, T. T., Lee, J. S., Lee, D. H., Nguyen, M. T., Kim, M. C., & Kim, C. H. (2021). Antimicrobial activities of probiotics against Pseudomonas aeruginosa. Journal of Aquatic Biology, 32(2), 154–162.

Obisesan, O. M., Oladosu, G. A., Adelakun, O. D., Ajibade, A. O., Adah, A. D., Oloko, A. B., &Bamigboye, O. F. (2022). Pathogenicity of Pseudomonas aeruginosa in reciprocal hybrids of Clarias gariepinus and Heterobranchusbidorsalis. Nigerian Journal of Fisheries, 19(2), 2510–2515.

Oladele, O. O., Olufemi, B. E., Ajayi, O. A., Ameji, S. N., &Ntiwunka, U. G. (2019). Studies on experimental pseudomoniasis and vibriosis in African catfish (Clarias gariepinus, Burchell, 1822). Vom Journal of Veterinary Science, 14(1), 60–74.

Ringø, E., Van Doan, H., Lee, S. H., Soltani, M., Hoseinifar, S. H., Harikrishnan, R., & Song, S. K. (2020). Probiotics, lactic acid bacteria and bacilli: interesting supplementation for aquaculture. Journal of applied microbiology, 129(1), 116-136.

Rodrigues, S., Antunes, S. C., & Correia, A. T. (2019). Histopathological effects in gills and liver of Sparus aurata following acute and chronic exposures to erythromycin and oxytetracycline. Environmental Science and Pollution Research, 26, 15481–15495. https://doi.org/10.1007/s11356-019-04954-0

Srivastava, P., Ramesh, M., Kaushik, P., Kumari, A., & Aggarwal, S. (2022). Pyocyanin pigment from Pseudomonas species: Source of a dye and antimicrobial textile. Proceedings of the Indian National Science Academy, 88, 542–550. https://doi.org/10.1007/s43538-022-00109-x

Strzy¿ewska, E., Szarek, J., & Babiñska, I. (2016). Morphologic evaluation of the gills as a tool in the diagnostics of pathological conditions in fish and pollution in the aquatic environment: A review. Veterinarni Medicina, 61, 123–132. https://doi.org/10.17221/8763-VETMED

Thippakorn, C., Isarankura-Na-Ayudhya, C., Pannengpetch, S., Isarankura-Na-Ayudhya, P., Schaduangrat, N., Nantasenamat, C., &Prachayasittikul, V. (2018). Oxidative responses and defense mechanism of hyperpigmented Pseudomonas aeruginosa as characterized by proteomics and metabolomics. EXCLI Journal, 17, 544.

Zada, L., Anwar, S., Imtiaz, S., Saleem, M., & Shah, A. A. (2024). In vitro study: Methylene blue-based antibacterial photodynamic inactivation of Pseudomonas aeruginosa. Applied Microbiology and Biotechnology, 108(1), 169.




DOI: http://dx.doi.org/10.15578/iaj.20.2.2025.185-195

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Creative Commons License
Indonesian Aquaculture Journal is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats
p-ISSN: 0215-0883
e-ISSN: 2502-6577

 

Hasil gambar untuk isjd