MARINE COPERNICUS OCEANOGRAPHIC DATA ANALYSIS: A COMPARATIVE STUDY WITH BUOY RAMA MEASUREMENTS
Abstract
Keywords
Full Text:
PDFReferences
Anais P. (2024). What are the different sources of Copernicus Marine data? Help.Marine.Copernicus.Eu.
Ballarotta, M., Ubelmann, C., Veillard, P., Prandi, P., Etienne, H., Mulet, S., Faugère, Y., Dibarboure, G., Morrow, R., & Picot, N. (2023). Improved global sea surface height and current maps from remote sensing and in situ observations. Earth System Science Data, 15(1), 295–315. https://doi.org/10.5194/essd-15-295-2023
Boutin, J., Reul, N., Koehler, J., Martin, A., Catany, R., Guimbard, S., Rouffi, F., Vergely, J. L., Arias, M., Chakroun, M., Corato, G., Estella-Perez, V., Hasson, A., Josey, S., Khvorostyanov, D., Kolodziejczyk, N., Mignot, J., Olivier, L., Reverdin, G., … Mecklenburg, S. (2021). Satellite-Based Sea Surface Salinity Designed for Ocean and Climate Studies. Journal of Geophysical Research: Oceans, 126(11), e2021JC017676. https://doi.org/https://doi.org/10.1029/2021JC017676
Byrne, D., Polton, J., O’Dea, E., & Williams, J. (2023). Using the COAsT Python package to develop a standardised validation workflow for ocean physics models. Geoscientific Model Development, 16(13), 3749–3764. https://doi.org/10.5194/gmd-16-3749-2023
Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science, 7, e623. https://doi.org/10.7717/peerj-cs.623
CLS. (2025). How are defined the different heights used in altimetry? Duacs.Cls.Fr. https://duacs.cls.fr/faq/what-are-the-product-specification/different-sea-surface-heights-used-in-altimetry/
de Souza, J. M. A. C., Phellipe, C., Rafael, S., & and Roughan, M. (2021). Evaluation of four global ocean reanalysis products for New Zealand waters–A guide for regional ocean modelling. New Zealand Journal of Marine and Freshwater Research, 55(1), 132–155. https://doi.org/10.1080/00288330.2020.1713179
Hart-Davis, M. G., Piccioni, G., Dettmering, D., Schwatke, C., Passaro, M., & Seitz, F. (2021). EOT20: a global ocean tide model from multi-mission satellite altimetry. Earth System Science Data, 13(8), 3869–3884. https://doi.org/10.5194/essd-13-3869-2021
Lin, M., & Yang, C. (2020). Ocean Observation Technologies: A Review. Chinese Journal of Mechanical Engineering, 33(1), 32. https://doi.org/10.1186/s10033-020-00449-z
Lumban-Gaol, J., Siswanto, E., Mahapatra, K., Natih, N. M. N., Nurjaya, I. W., Hartanto, M. T., Maulana, E., Adrianto, L., Rachman, H. A., Osawa, T., Rahman, B. M. K., & Permana, A. (2021). Impact of the Strong Downwelling (Upwelling) on Small Pelagic Fish Production during the 2016 (2019) Negative (Positive) Indian Ocean Dipole Events in the Eastern Indian Ocean off Java. Climate, 9(2). https://doi.org/10.3390/cli9020029
M. J. McPhaden, M. Ravichandran, K. Ando, W. Yu, & E. Schulz. (2018). RAMA-2.0. Indian Ocean Observing System (IndOOS) Decadal Review, 110–114.
Meyssignac, B., Piecuch, C. G., Merchant, C. J., Racault, M.-F., Palanisamy, H., MacIntosh, C., Sathyendranath, S., & Brewin, R. (2017). Causes of the Regional Variability in Observed Sea Level, Sea Surface Temperature and Ocean Colour Over the Period 1993–2011. Surveys in Geophysics, 38(1), 187–215. https://doi.org/10.1007/s10712-016-9383-1
Moteki, Q. (2022). Validation of satellite-based sea surface temperature products against in situ observations off the western coast of Sumatra. Scientific Reports, 12(1), 92. https://doi.org/10.1038/s41598-021-04156-0
NOAA. (2025a). Glossary and Acronyms. Pmel.Noaa.Gov. https://www.pmel.noaa.gov/gtmba/glossary-and-acronyms
NOAA. (2025b). Indian Ocean - RAMA. Pmel.Noaa.Gov. https://www.pmel.noaa.gov/gtmba/pmel-theme/indian-ocean-rama
Ramesh, R., Chen, Z., Cummins, V., Day, J., D’Elia, C., Dennison, B., Forbes, D. L., Glaeser, B., Glaser, M., Glavovic, B., Kremer, H., Lange, M., Larsen, J. N., Le Tissier, M., Newton, A., Pelling, M., Purvaja, R., & Wolanski, E. (2015). Land–Ocean Interactions in the Coastal Zone: Past, present & future. Anthropocene, 12, 85–98. https://doi.org/https://doi.org/10.1016/j.ancene.2016.01.005
Ratheesh, S., Mankad, B., Basu, S., & Sharma, R. (2013). Assessment of Satellite-Derived Sea Surface Salinity in the Indian Ocean. IEEE Geoscience and Remote Sensing Letters, 10, 428–431. https://doi.org/10.1109/LGRS.2012.2207943
Sun, Q., Zhang, Y., Du, Y., & Jiang, X. (2022). Asymmetric Response of Sea Surface Salinity to Extreme Positive and Negative Indian Ocean Dipole in the Southern Tropical Indian Ocean. Journal of Geophysical Research: Oceans, 127(11), e2022JC018986. https://doi.org/https://doi.org/10.1029/2022JC018986
Syah, A., Ni’am, A., & Jatisworo, D. (2022). Potential fishing grounds of Skipjack tuna (Katsuwonus pelamis) in western water of Sumatera using remotely sensed data and maximum entropy model. IOP Conference Series: Earth and Environmental Science.
Vogelzang, J., & Stoffelen, A. (2022). On the Accuracy and Consistency of Quintuple Collocation Analysis of In Situ, Scatterometer, and NWP Winds. Remote Sensing, 14(18). https://doi.org/10.3390/rs14184552
von Schuckmann, K., Pierre-Yves, L. T., Neville, S. (Chair), Ananda, P., Samuel, D., Jean-Pierre, G., Marilaure, G., Signe, A., Victor, A., Brittany E., A., Andrés, A.-M., Ali, A., Joel, A., Marco, B., Francesco, B., Mirna, B., Arno, B., Sana Ben, I., Alvise, B., … and Zupa, W. (2021). Copernicus Marine Service Ocean State Report, Issue 5. Journal of Operational Oceanography, 14(sup1), 1–185. https://doi.org/10.1080/1755876X.2021.1946240
Yang, C., Leonelli, F. E., Marullo, S., Artale, V., Beggs, H., Nardelli, B. B., Chin, T. M., Toma, V. De, Good, S., Huang, B., Merchant, C. J., Sakurai, T., Santoleri, R., Vazquez-Cuervo, J., Zhang, H.-M., & Pisano, A. (2021). Sea Surface Temperature Intercomparison in the Framework of the Copernicus Climate Change Service (C3S). Journal of Climate, 34(13), 5257–5283. https://doi.org/10.1175/JCLI-D-20-0793.1
Zainuddin, M., Safruddin, S., Farhum, A., Budimawan, B., Hidayat, R., Selamat, M., & Ihsan, Y. (2023). Satellite-Based Ocean Color and Thermal Signatures Defining Habitat Hotspots and the Movement Pattern for Commercial Skipjack Tuna in Indonesia Fisheries Management Area 713, Western Tropical Pacific. Remote Sensing, 1268. https://doi.org/10.3390/rs15051268
Zhang, X., & Mochizuki, T. (2022). Sea surface height fluctuations relevant to Indian summer monsoon over the northwestern Indian Ocean. Frontiers in Climate, Volume 4-2022. https://doi.org/10.3389/fclim.2022.1008776