Evolution of Subsurface Temperatures in West Sumatra - Southern Java Waters During 2010–2014 Indian Ocean Dipole Events

A.R. Khairun Nisa, Ivonne M. Radjawane

Abstract

The temperature anomaly formation in the West Sumatra and South Java Waters plays an important role in the formation of the Indian Ocean Dipole (IOD). There have not been many detailed studies on the evolution of temperature anomalies in the subsurface layers in the area during the IOD events. In this study, temperature data from the HYCOM were used to examine the evolution of temperature anomalies on the surface and subsurface in the event of negative IOD (nIOD) 2010 and positive IOD (pIOD) 2012). The analysis was done using a cross-section plot and a Hovmöller diagram. It has shown that in the negative IOD 2010, a positive temperature anomaly in the subsurface layer was started four months earlier than the surface layer and ended six months after the IOD event. In contrast to positive IOD 2012, a negative temperature anomaly formed in the surface layer seven months earlier, and then move to the deeper layer coincide with the onset of the positive IOD event. The negative anomaly in both layers was simultaneously over two months after the positive IOD event over. The La-Niña phase that coincides with the positive or negative IOD event, influences the process of forming temperature anomalies in the subsurface layer, which in this case supports (inhibits) the formation of positive (negative) temperature anomalies in negative (positive) IOD event. The temperature anomaly in the subsurface layer can be an alternative indicator in identifying and predicting IOD events.

Keywords

Indian Ocean Dipole (IOD); subsurface layer; La-Niña; West Sumatra Waters; South Java Waters

Full Text:

PDF

References

Adiwira, H., Purba, N.P., Harahap, S.A., & Syamsuddin, M.L. (2018). Variabilitas suhu laut pada kejadian IOD (Indian Ocean Dipole) di perairan barat Sumatera menggunakan data Argo Float. Depik, 7(1), 28-41. https://doi.org/10.13170/depik.7.1.8089

Annamalai, H., Murtugudde, R., Potemra, J., Xie, S. P., Liu, P., & Wang, B. (2003). Coupled dynamics over the Indian Ocean: Spring initiation of the Zonal Mode. Deep-Sea Research Part II: Topical Studies in Oceanography, 50(12–13), 2305-2330. https://doi.org/10.1016/S0967-0645(03)00058-4

Currie, J.C., Lengaigne, M., Vialard, J., Kaplan, D. M., Aumont, O., Naqvi, S.W.A., & Maury, O. (2013). Indian ocean dipole and El Niño/Southern Oscillation impacts on regional chlorophyll anomalies in the Indian Ocean. Biogeosciences, 10(10), 6677–6698. https://doi.org/10.5194/bg-10-6677-2013

Delman, A.S., Sprintall, J., McClean, J.L., & Talley, L.D. (2016). Anomalous Java cooling at the initiation of positive Indian Ocean Dipole events. Journal of Geophysical Research: Oceans, 121(8), 5806-5824. https://doi.org/10.1002/2016JC011635

Fadlan, A., Sugianto, D.N., Kunarso, & Zainuri, M. (2017). Influence of ENSO and IOD to Variability of Sea Surface Height in the North and South of Java Island. IOP Conference Series: Earth and Environmental Science, 55(1). https://doi.org/10.1088/1755-1315/55/1/012021

Hatmaja, R.B., Rusmanansari, A.H., & Radjawane, I.M. (2019). The dynamics of negative Indian Ocean Dipole (nIOD) and its relation to the anomalous high rainfall in West Java Province, Indonesia. IOP Conference Series: Earth and Environmental Science, 303(1). https://doi.org/10.1088/1755-1315/303/1/012004

Hidayat, R., & Ando, K. (2018). Variabilitas Curah Hujan Indonesia dan Hubungannya dengan ENSO/IOD: Estimasi Menggunakan Data JRA-25/JCDAS. Agromet, 28(1), 1-8. https://doi.org/10.29244/j.agromet.28.1.1-8

Horii, T., Hase, H., Ueki, I., & Masumoto, Y. (2008). Oceanic precondition and evolution of the 2006 Indian Ocean dipole. Geophysical Research Letters, 35(3). https://doi.org/10.1029/2007GL032464

Horii, T., Ueki, I., Ando, K., & Mizuno, K. (2013). Eastern Indian Ocean warming associated with the negative Indian Ocean dipole: A case study of the 2010 event. Journal of Geophysical Research: Oceans, 118(1), 536–549. https://doi.org/10.1002/jgrc.20071

Iskandar, I., Mardiansyah, W., Setiabudidaya, D., Affandi, A.K., & Syamsuddin, F. (2014). Surface and subsurface oceanic variability observed in the eastern equatorial Indian Ocean during three consecutive Indian Ocean dipole events: 2006 - 2008. AIP Conference Proceedings, 1617. https://doi.org/10.1063/1.4897101

Iskandar, I. (2012). The role of equatorial oceanic waves in the activation of the 2006 Indian Ocean Dipole. ITB Journal of Science, 44 A(2), 113–128. https://doi.org/10.5614/itbj.sci.2012.44.2.2

Iskandar, I., Irfan, M., & Saymsuddin, F. (2013). Why was the 2008 Indian Ocean Dipole a short-lived event?. Ocean Science Journal, 48(2), 149–160. https://doi.org/10.1007/s12601-013-0012-3

Keerthi, M.G., Lengaigne, M., Vialard, J., de Boyer Montégut, C., & Muraleedharan, P.M. (2013). Interannual variability of the Tropical Indian Ocean mixed layer depth. Climate Dynamics, 40(3–4), 743–759. https://doi.org/10.1007/s00382-012-1295-2

Kurniadi, A., Weller, E., Min, S.K., & Seong, M.G. (2021). Independent ENSO and IOD impacts on rainfall extremes over Indonesia. International Journal of Climatology, 41(6) 3640-3656. https://doi.org/10.1002/joc.7040

Nur’utami, M.N., & Hidayat, R. (2016). Influences of IOD and ENSO to Indonesian Rainfall Variability: Role of Atmosphere-ocean Interaction in the Indo-pacific Sector. Procedia Environmental Sciences, 33. https://doi.org/10.1016/j.proenv.2016.03.070

Pandey, S., Bhagawati, C., Dandapat, S., & Chakraborty, A. (2019). Surface chlorophyll anomalies associated with Indian Ocean Dipole and El Niño Southern Oscillation in North Indian Ocean: a case study of 2006–2007 event. Environmental Monitoring and Assessment, 191. https://doi.org/10.1007/s10661-019-7754-z

Radjawane, I.M., Bernawis, L.I., Priyono, B., Fadli, M., & Putuhena, H.S. (2015). Interannual variation of ocean heat content in outer Indonesian waters in warming ocean (Case study: West Sumatra waters). AIP Conference Proceedings, 1677. https://doi.org/10.1063/1.4930695

Risbey, J.S., Pook, M.J., McIntosh, P.C., Wheeler, M.C., & Hendon, H.H. (2009). On the remote drivers of rainfall variability in Australia. Monthly Weather Review, 137(10), 3233–3253. https://doi.org/10.1175/2009MWR2861.1

Saji, N.H., Goswami, B.N., Vinayachandran, P.N., & Yamagata, T. (1999). A dipole mode in the tropical Indian ocean. Nature, 401(6751), 360–363. https://doi.org/10.1038/43854

Santoso, A., Sen Gupta, A., & England, M.H. (2010). Genesis of Indian Ocean mixed layer temperature anomalies: A heat budget analysis. Journal of Climate, 23(20), 5375–5403. https://doi.org/10.1175/2010JCLI3072.1

Schott, F.A., Xie, S.P., & McCreary, J.P. (2009). Indian ocean circulation and climate variability. In Reviews of Geophysics, 47(1). https://doi.org/10.1029/2007RG000245

Sun, Q., Du, Y., Zhang, Y., Feng, M., Chowdary, J. S., Chi, J., Qiu, S., & Yu, W. (2019). Evolution of Sea Surface Salinity Anomalies in the Southwestern Tropical Indian Ocean During 2010–2011 Influenced by a Negative IOD Event. Journal of Geophysical Research: Oceans, 124(5), 3428-3445. https://doi.org/10.1029/2018JC014580

Susanto, R.D., Gordon, A.L., & Zheng, Q. (2001). Upwelling along the coasts of Java and Sumatra and its relation to ENSO. Geophysical Research Letters, 28(8), 1599-1602. https://doi.org/10.1029/2000GL011844

Vinayachandran, P.N., Francis, P.A., & Rao, S.A. (2009). Indian Ocean Dipole: Processes and impacts. Current Trends in Science.

Xia, H., & Wu, K. (2020). Investigation of the Heat Budget of the Tropical Indian Ocean During Indian Ocean Dipole Events Occurring After ENSO. Journal of Ocean University of China, 19(3), pages 525–535. https://doi.org/10.1007/s11802-020-4269-8

Yuhong, Z., Yan, D., Shaojun, Z., Yali, Y., & Xuhua, C. (2013). Impact of Indian Ocean Dipole on the salinity budget in the equatorial Indian Ocean. Journal of Geophysical Research: Oceans, 118(10), 4911-4923. https://doi.org/10.1002/jgrc.20392

Zhou, Q., Duan, W., Mu, M., & Feng, R. (2015). Influence of positive and negative Indian Ocean Dipoles on ENSO via the Indonesian Throughflow: Results from sensitivity experiments. Advances in Atmospheric Sciences, 32(6), 783–793. https://doi.org/10.1007/s00376-014-4141-0

National Oceanic and Atmospheric Administration. (NOAA). Accessed 13 July 2020 https://www.pmel.noaa.gov/tao/drupal/disdel/

Japan Agency for Marine-Earth Science and Technology. (JAMSTEC). (2020. Accessed 16 July 2020 from http://www.jamstec.go.jp/aplinfo/sintexf/e/index.html