Salinity Sensor Development for Pond Water Utilizing Ultrasonic Wave

Dananjaya Endi Pratama, Agus Indra Gunawan, Rusminto Tjatur Widodo, Akhmad Hendriawan

Abstract

Shrimp farming is one of the most popular aquaculture activities in Indonesia. This activity is carried out in a pond. Therefore, there are many ponds as a place for shrimp farming in Indonesia. Several factors affect the results of shrimp farming in ponds. One of the factors is water quality. Four parameters that are commonly used to indicate water quality i.e. dissolve oxygen, salinity, PH, and temperature. In this study, we discussed salinity measurement. Most salinity sensors use the probe principle in measurement. When the sensors are used to measure the water that contains mineral salts, the probe will be susceptible to rust and cause measurement errors. Based on these conditions, we conducted a study of salinity measurements by using the acoustic technique. The measurement was carried out by using an ultrasonic wave. The water salinity was determined based on the acoustic intensity and acoustic speed. In this research, we developed a conversion curve based on the measurement of acoustic intensity from NaCl, KCl, and MgCl2 saline solutions with certain concentrations. The conversion curve is used to measure salinity in pond water. We also calculated salinity based on the measurement result of acoustic speed. From the experiment, the NaCl conversion curve became the most suitable for salinity measurement. The measurement result of salinity in pond water from the NaCl saline solution conversion curve was very close to the results of Del Grosso formula, Chen Millero formula, and refractometer.

Keywords

Acoustic intensity; acoustic speed; conversion curve; salinity

Full Text:

PDF

References

Apriani, M., Hadi, W., & Masduqi, A. (2018). Physicochemical properties of sea water and bittern in Indonesia: Quality improvement and potential resources utilization for marine environmental sustainability. Journal of Ecological Engineering, 19(3), 1–10. https://doi.org/10.12911/22998993/86150

Atmomarsono, M., Supito, Mangampa, M., Pitoyo, H., Lideman, S, H. T., … Akmal. (2014). WWF-Indonesia Better Management Practices BUDIDAYA UDANG VANNAMEI Tambak Semi Intensif dengan Instalasi Pengolahan Air Limbah ( IPAL. Retrieved from https://www.academia.edu/34036178/WWF_Indonesia_Better_Management_Practices_BUDIDAYA_UDANG_VANNAMEI_Tambak_Semi_Intensif_dengan_Instalasi_Pengolahan_Air_Limbah_IPAL

Badan Standardisasi Nasional. (2014). Udang vaname (Litopenaeus vannamei, Boone 1931). Jakarta.

Bakar, S.A.A., Ong, N.R., Aziz, M.H.A., Alcain, J.B., Haimi, W.M.W.N., Sauli, Z., & Haimi, W.N. (2017). Underwater detection by using ultrasonic sensor. AIP Conference Proceedings 1885, 020305. https://doi.org/10.1063/1.5002499

Bramawanto, R., & Sagala, S.L. (2016). Meteorological and physical conditions of Salt Pan Areas with Filtering-Threaded Technology (TUF) in Cirebon Regency, Indonesia. Jurnal Segara, 12(2), 81. https://doi.org/10.15578/segara.v12i2.165

Forchhammer, G. (1865). On the Composition of Sea-Water in the Different Parts of the Ocean. Philosophical Transactions of the Royal Society of London, 155, 203-262.

Gunawan, A.I., Dewantara, B.S.B., Santoso, T.B., Wicaksono, I.D., Prastika, E.B., & Prianto, C.E. (2017). Characterizing acoustic impedance of several saline solution utilizing range finder acoustic sensor. Proceedings IES-ETA 2017 - International Electronics Symposium on Engineering Technology and Applications, 2017-December, 212–216. https://doi.org/10.1109/ELECSYM.2017.8240405

Gunawan, A.I., Hendriawan, A., & Sulthaan, A. (2020). Utilization of Range Finder Ultrasound for Acoustic Impedance Estimator of Saline Solution. IES 2020 - International Electronics Symposium: The Role of Autonomous and Intelligent Systems for Human Life and Comfort, 86–90. https://doi.org/10.1109/IES50839.2020.9231713

Gunawan, A.I., Hozumi, N., Furuhashi, T., Yoshida, S., Saijo, Y., Kobayashi, K., & Yamamoto, S. (2013). Projection mode ultrasonic microscopy for cell-size observation. IEEE International Ultrasonics Symposium, IUS, 884–887. https://doi.org/10.1109/ULTSYM.2013.0227

Gunawan, A.I., Hozumi, N., Takahashi, K., Yoshida, S., Saijo, Y., Kobayashi, K., & Yamamoto, S. (2015). Numerical analysis of acoustic impedance microscope utilizing acoustic lens transducer to examine cultured cells. Ultrasonics, 63, 102-110. https://doi.org/10.1016/j.ultras.2015.06.016

Gunawan, A.I., Hozumi, N., Yoshida, S., Saijo, Y., Electronics Co, H., Toyohashi, L., & Seiji Yamamoto, J. (2016). Acoustic Impedance Estimation Using Calibration Curve for Scanning Acoustic Impedance Microscope Kazuto Kobayashi. Conference: 2016 International Conference on Knowledge Creation and Intelligent Computing (KCIC), 240-245. doi: 10.1109/KCIC.2016.7883653.

Gunawan, A.I, Hozumi, N., Yoshida, S., Saijo, Y., Kobayashi, K., & Yamamoto, S. (2015). Numerical analysis of ultrasound propagation and reflection intensity for biological acoustic impedance microscope. Ultrasonics, 61, 79–87. https://doi.org/10.1016/J.ULTRAS.2015.03.010

Hoche, S., Hussein, M. A., & Becker, T. (2015). Density, ultrasound velocity, acoustic impedance, reflection and absorption coefficient determination of liquids via multiple reflection method. Ultrasonics, 57(C), 65-71. https://doi.org/10.1016/J.ULTRAS.2014.10.017

Hozumi, N., Kimura, A., Terauchi, S., Nagao, M., Yoshida, S., Kobayashi, K., & Saijo, Y. (2005). Acoustic impedance micro-imaging for biological tissue using a focused acoustic pulse with a frequency range up to 100 MHz. Proceedings - IEEE Ultrasonics Symposium, 1, 170–173. https://doi.org/10.1109/ULTSYM.2005.1602823

Hozumi, N., Nakano, A., Terauchi, S., Nagao, M., Yoshida, S., Kobayashi, K., Yamamoto, S., & Saijo, Y. (2007). Precise calibration for biological acoustic impedance microscope. Proceedings - IEEE Ultrasonics Symposium, 801-804. https://doi.org/10.1109/ULTSYM.2007.205

Hozumi, N., Gunawan, A. I., Kajima, S., Yoshida, S., Saijo, Y., Kobayashi, K., & Yamamoto, S. (2013). Sound field analysis for biological acoustic impedance microscope for its precise calibration. IEEE International Ultrasonics Symposium, IUS, 1212–1215. https://doi.org/10.1109/ULTSYM.2013.0310

KKP | Kementerian Kelautan dan Perikanan. (2021). Retrieved August 29, 2022, from https://kkp.go.id/djpb/bpbapsitubondo/artikel/34255-budidaya-udang-vaname-di-tambak-milenial-millenial-shrimp-farming-msf

Millero, F.J. (2010). History of the equation of state of seawater. Oceanography, 23(3), 18–33. https://doi.org/10.5670/OCEANOG.2010.21

Nurjana, I. W. (2016). Salinity Structure Within The Estuary of Bintuni Bay, at The Southern Part of Bird Head of West Papua, Indonesia. Jurnal Segara, 12(2), 73-80. https://doi.org/10.15578/segara.v12i2.7657

Salinity sensors - Coastal Wiki. (2020). Retrieved August 29, 2022, from http://www.coastalwiki.org/wiki/Salinity_sensors

Salinometer - MyScienceCruise. (2016). Retrieved August 29, 2022, from https://portal.geomar.de/web/mysciencecruise/salinometer

Suharyadi. (2011, in Indonesian). Vaname Shrimp Cultivation. Jakarta.

Supito. (2017, in Indonesian). Vaname Shrimp (Litopenaeus vannamei) Cultivation techniques. Jepara: Balai Besar Perikanan Budidaya Air Payau (BBPBAP) Jepara.

Supono. (2017, in Indonesian). Shrimp Production Technology. Yogyakarta: Plantaxia.

Sverdrup, H.U., Johnson, M.W., & Fleming, R.F. (1942). The Ocean Their Physics, Chemistry, and General Biology. New York: Prentice-Hall, Inc.

Talukder, S., Sakib, M.I.I., Talukder, Z.R., Das, U., Saha, A., & Bayev, N.S.N. (2018). USenSewer: Ultrasonic Sensor and GSM-Arduino based Automated Sewerage Management. International Conference on Current Trends in Computer, Electrical, Electronics and Communication, CTCEEC 2017, 12–17. https://doi.org/10.1109/CTCEEC.2017.8455169

Technical Guides - Speed of sound in sea water - Underlying Physics. (n.d.). Retrieved December 2, 2021, from http://resource.npl.co.uk/acoustics/techguides/soundseawater/underlying-phys.html