Estimation of Sediment Distribution Based on Bathymetry Alteration (2014-2016) in the Inner Bay of Ambon, Maluku, Indonesia

Guntur adhi rahmawan, wisnu arya gemilang, Ulung jantama wisha, ruzana dhiauddin, Koko Ondara

Abstract


The development of Ambon city is centered around Ambon Bay. As the major area of marine and social activities, changes occurred directly affect to the degraded of the bay water region. Sedimentation is the major issue that has been occurring. Marine ecosystem can be potentially disrupted by the high rate of sedimentation in the Inner Bay of Ambon (TAD). This study aims to determine the distribution of sediment volume within the bay. Bathymetry of TAD was surveyed by using transducer (Echosounder Echo track CVM Teledyne Odom Hydrographic Single Beam), which the depth of certain position was connected to GPS to record all the position data accurately. The field data are then analyzed spatially modelled in the form of 2D and 3D maps, overlaid with the past bathymetry data to calculate the difference between water depth and sediment volume during that period (2014-2016). The depth of TAD in 2014 ranged between 0 – -42 meters, whilst, in 2016 the water depth slightly changed to 0 – -44 meters. The reduction of the water depth is observed in the 25 – 125 m from shoreline, where the bed thickness alteration observed ranged from 0.1 - 1.4 m. Total volume of sediment augmentation reached 13,236,182 m3 that covers about 67.67 Ha. Tidal current speed ranged averagely from 0-1.2 m/s which has a tremendous influence on sediment transport in TAD. The bay mouth that is funnel-shaped enclosed area triggers a high transport mechanism on its surrounding. If ongoing, these conditions may endanger the environment and biota survival ability.


Keywords


Sediment distribution, bathymetry alteration, Inner Bay of Ambon

References


Bakke, T., Klungsøyr, J., & Sanni, S. (2013). Environmental impacts of produced water and drilling waste discharges from the Norwegian offshore petroleum industry. Marine environmental research, 92, 154-169. https://doi.org/10.1016/j.marenvres.2013.09.012.

Bappeda Kota Ambon, (2009). Master Plan Ambon Water Front City.

Fairley, I., Evans, P., Wooldridge, C., Willis, M., & Masters, I. (2013). Evaluation of tidal stream resource in a potential array area via direct measurements. Renewable Energy, 57, 70-78. https://doi.org/10.1016/j.renene.2013.01.024.

Hamzah, M.S. and Wenno, L., 1987. Sirkulasi arus di teluk ambon. Balai Penelitian dan Pengembangan Sumberdaya Laut, Teluk Ambon; Biologi, Perikanan, Oseanografi dan Geologi, 91-101pp.

Holman, R., Plant, N., & Holland, T. (2013). cBathy: A robust algorithm for estimating nearshore bathymetry. Journal of geophysical research: Oceans, 118(5), 2595-2609. https://doi.org/10.1002/jgrc.20199.

Irawan, A., & Nganro, N. R. (2016). Distribution of Seagrasses in Inner Ambon Bay. Jurnal Ilmu dan Teknologi Kelautan Tropis, 8(1). 99-114. http://dx.doi.org/10.29244/jitkt.v8i1.12499.

Jin, K. R., & Ji, Z. G. (2004). Case study: modeling of sediment transport and wind-wave impact in Lake Okeechobee. Journal of hydraulic engineering. 130(11): 1055-1067. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:11(1055).

Ju, L., Wen, A. B., Long, Y., Yan, D. C., & Guo, J. (2013). Using 137 Cs tracing methods to estimate soil redistribution rates and to construct a sediment budget for a small agricultural catchment in the three gorges reservoir region, China. Journal of Mountain Science, 10(3), 428-436. https://doi.org/10.1007/s11629-013-2585-9.

Kakisina, T. J., Anggoro, S., & Hartoko, A. (2015). Analysis of the Impact of Land Use on the Degradation of Coastal Areas at Ambon Bay-mollucas Province Indonesia. Procedia Environmental Sciences, 23, 266-273. https://doi.org/10.1016/j.proenv.2015.01.040.

Kakisina, T. J., Anggoro, S., & Hartoko, A. (2016). NEMOS (Nearshore Modelling of Shoreline Change) Model for Abrasion Mitigation at the Northern Coast of Ambon Bay. Aquatic Procedia, 7, 242-246. https://doi.org/10.1016/j.aqpro.2016.07.034.

Khasanah, U., & Heliani, L. S. (2014). Perhitungan Nilai Chart Datum Stasiun Pasang Surut Jepara Berdasarkan Periode Pergerakan Bulan, Bumi, Dan Matahari Menggunakan Data Pasut Tahun 1994 Sd 2013. Jurnal Geospasial Indonesia, ISSN, 2222-2863.

Leuwol, F.S. and Sunarto, M.S., (2006). Pengaruh sedimen Sungai Galala terhadap perubahan garis pantai di perairan Teluk Ambon (Doctoral dissertation, Universitas Gadjah Mada).

Mehdiabadi. F.E., M.M. Mehdizabeh & M. Rahbani. (2015). Simulating Wind Driven Waves in the Strait of Hormuz using MIKE 21. Ilmu Kelautan. 20(1): 6-13. https://doi.org/10.14710/ik.ijms.20.1.1-8.

Mizushima, K., Matsuoka, K., & Fukuyo, Y. (2007). Vertical distribution of Pyrodinium bahamense var. compressum (Dinophyceae) cysts in Ambon Bay and Hurun Bay, Indonesia. Plankton and Benthos Research, 2(4), 163-174. https://doi.org/10.3800/pbr.2.163.

Napitupulu, R.M.F., Sugianto, D.N. and Hariyadi, H. (2015). Pemetaan Batimetri Sebagai Pertimbangan Penentuan Alur Pelayaran Di Perairan Pulau Panjang, Jepara. Journal of Oceanography, 4(1), pp.223-232.

Oostdam, B. L., & Jordan, R. R. (1972). Suspended sediment transport in Delaware Bay. In Environmental Framework of Coastal Plain Estuaries (pp. 143-149). https://doi.org/10.1130/mem133-p143.

Tuhumury, N. C., Sahetapy, J.M.F. and Louhanapessy, D.G., (2007). Permasalahan sedimentasi dan pengelolaannya di pesisir Lateri Kota Ambon. J. Penelitian Ilmu-ilmu Perikanan dan Kelautan, 2(1), pp.17-22.

Nowacki, D. J., & Ogston, A. S. (2013). Water and sediment transport of channel-flat systems in a mesotidal mudflat: Willapa Bay, Washington. Continental Shelf Research, 60, S111-S124. https://doi.org/10.1016/j.csr.2012.07.019.

Noya, Y. A., Purba, M., Koropitan, A. F., & Prartono, T. (2017). Cohesive Sediment Transport Modeling on Inner Ambon Bay. Jurnal Ilmu dan Teknologi Kelautan Tropis, 8(2), 671-687. https://doi.org/10.28930/jitkt.v8i2.15834.

Pattipeilohy, M. (2014). Fenomena pendangkalan zona pasang surut hutan mangrove teluk dalam ambon serta upaya pengembangan ekowisata. Jurnal Pena Sains, 1(2), 56-63.

Pownall, J.M., Hall, R. and Watkinson, I.M., (2013). Extreme extension across Seram and Ambon, eastern Indonesia: evidence for Banda slab rollback. Solid Earth, 4(2): 277. https://doi.org/10.5194/sed-5-525-2013.

Purwoko Agus., (2009). Function Analysis and Land Change in Coastal Area Using Satellite Imagery Based Geographic Information System (A Case Study in the Area Wild life Coral Ivory and Langkat Northeast). Journal of Planning and Regional Development (4)3.

Sihasale, D.A., (2013). Keanekaragaman Hayati di Kawasan Pantai Kota Ambon dan Konsekuensi untuk Pengembangan Pariwisata Pesisir. Journal of Indonesian Tourism and Development Studies, 1(1), pp.20-27.

Souisa, M., Hendrajaya, L., & Handayani, G. (2016, August). Landslide hazard and risk assessment for Ambon city using landslide inventory and geographic information system. In Journal of Physics: Conference Series (Vol. 739, No. 1, p. 012078). IOP Publishing. https://doi.org/10.1088/1742-6596/739/1/012078.

Sutarna, I. N., (1989). Kondisi karang di teluk Ambon bagian dalam Teluk Ambon. Biologi, perikanan, oseanografi dan geologi, pp.13-22.

Suyadi, S., (2017). Satu Dekade Kondisi Hutan Mangrove di Teluk Ambon, Maluku (A Decade of Mangrove Forest Condition in Ambon Bay, Maluku). Jurnal Biologi Indonesia, 8(1).

Thomson, R.E. and Emery, W.J., (2014). Data analysis methods in physical oceanography. Newnes.

Tuahatu, J.W., Hulopy, M. and Louhenapessy, D.G., (2016). Community structure of seagrass in Waai and Lateri waters, Ambon Island, Indonesia. Aquaculture, Aquarium, Conservation & Legislation-International Journal of the Bioflux Society (AACL Bioflux), 9(6).

Wang, T., Belle, I., & Hassler, U. (2015). Modelling of Singapore's topographic transformation based on DEMs. Geomorphology, 231, 367-375. https://doi.org/10.1016/j.geomorph.2014.12.027.

Wisha, U.J. and Heriati, A., (2016). Bathymetry and Hydrodynamics in Pare Bay Waters During Transitional Seasons (September-October). Omni-Akuatika, 12(2). https://doi.org/10.20884/1.oa.2016.12.2.98.

Wisha U. J., S. Husrin, & G. S. Prasetyo. (2016). Hydrodynamics of Bontang Seawaters: Its Effects on the Distribution of Water Quality Parameters. Ilmu Kelautan. 21(3): 123-134. https://doi.org/10.14710/ik.ijms.21.3.123-134.

Wisha, U. J., Al Tanto, T., Pranowo, W. S., & Husrin, S. (2017a). Current movement in Benoa Bay water, Bali, Indonesia: Pattern of tidal current changes simulated for the condition before, during, and after reclamation. Regional Studies in Marine Science. 18: 177-187. https://doi.org/10.1016/j.rsma.2017.10.006.

Wisha, U. J., Ondara, K., & Kusumah, G. (2017b). An Overview of Surface Water Quality Influenced by Suspended Solid Content in the Sayung Waters, Demak, Indonesia. Jurnal Segara, 13(2): 107-117. http://dx.doi.org/10.15578/segara.v13i2.6446.g5420.

Wu, X., Shen, Z., Liu, R. and Ding, X. (2008). Land use/cover dynamics in response to changes in environmental and socio-political forces in the upper reaches of Yangtze River, China. Sensors, 8(12), pp.8104-8122. http://dx.doi.org/10.3390/s8128104.




DOI: http://dx.doi.org/10.15578/segara.v15i2.6956

Copyright (c) 2019 JURNAL SEGARA


Index By

google scholar google scholar google scholargoogle scholargoogle scholargoogle scholargoogle scholar

View My Stats