Reef Geomorphology and Associated Habitats of Karimunjawa Islands, Indonesia: A Spatial Approach to Improve Coastal and Small Islands Management

Tubagus Solihuddin, Dwi Amanda Utami, Hadiwijaya Lesmana Salim, Eva Mustikasari

Abstract

The Karimunjawa Islands are situated in the offshore of Jepara region of Central Java with abundant coastal and marine resources including coral reefs. The reef geomorphology appears typical of fringing reefs worldwide comprising reef flat, reef crest and reef slope. The reef geomorphic profiles are generally gently sloping seaward with slightly raised reef crest along the reef edge. The reefs slope moderately (15-30°) at the upper forereef slope (~5-10 m depth) and tend to drop steeply, sometimes almost vertical, at depths of 10-30 m. The coral communities are found from the intertidal to a depth of about 15 m, with the most vigorous development occurring between 1.5 to 5 m. The reef flats have low coral cover and are extensively covered by a mixture of seagrass beds and carbonate sand. The reef crests, which mark boundaries between reef flat and upper forereef slope, are mainly colonized by mixed Acropora corals, mainly A. Hyacinthus. The forereef slopes have substantial coral growth prevailing mixed branching Acropora, Porites cylindrica and Porites sp. Sediments on the reef flats are mainly bioclastic materials derived from reef-erosion, including coral fragments, mollusks, foraminifera, red algae, Halimeda, Echinodermata, aggregate, quartz, and lithic fragments. Seagrass beds, mainly Enhalus, occur on the inner reef flat and are gradually shifted to macroalgae, predominantly Sargassum. The study provides a basic requirement for fisheries management and environmental monitoring for a mid-Sunda Shelf within a biodiversity “hotspot”.

Keywords

Coral reef; geomorphology; benthic habitats; management; environmental monitoring; Karimunjawa

Full Text:

PDF

References

Ahmad, W., & Neil, D.T. (1994). An evaluation of Landsat Thematic Mapper (TM) digital data for discriminating coral reef zonation: Heron Reef (GBR). International Journal of Remote Sensing, 15(13), 2583-2597.

Andréfouët, S., & Muller-Karger, F. (2006). Global assessment of modern coral reef extent and diversity for regional science and management applications: a view from space. Proceedings of 10th International Coral Reef Symposium, Okinawa, Japan, 28 June-32nd July 2004, Japanese Coral Reef Society.

Andréfouët, S., Kramer, P., Torres-Pulliza, D., Joyce, K.E., Hochberg, E.J., Garza-Pérez, R., Mumby, P.J., Riegl, B., Yamano, H., White, W.H., Zubia, M., Brock, J.C., Phinn, S.R., Naseer, A., Hatcher, B.G., & Muller-Karger, F. (2003). Multi-site evaluation of IKONOS data for classification of tropical coral reef environments. Remote Sensing of Environment, 88, 128-143.

Asriningrum, W. (2011). Reef morphology identification in Sikka, NTT using Landsat imagery. Journal of Indonesian Coral Reefs, 1, 48-54.

Van Bammelen, R.W. (1949). The Geology of Indonesia. Vol. LA: General Geology of Indonesia and Adjacent Archipelagoes. Martinus Nijhoff, The Hague, 723 pp.

Bina, R.T. (1982). Application of Landsat data to coral reef management in the Philippines, Proceedings of Great Barrier Reef Remote Sensing Workshop, Townsville, pp. 1-39.

Blanchon P. (2011). Geomorphic zonation. In: Hopley D. (ed.). Encyclopedia of modern coral reefs: structure, form and process. Dordrecht: Springer. 469-486.

Deshmukh, B., Bahuguna, A., Nayak, S., Dhargalkar, V.K., & Jagtap, T.G. (2005). Eco-geomorphological zonation of the Bangaram reef, Lakshadweep. Photonirvachak, 33(1), 99-106.

Diaz, R.J., Solan, M., & Valente, R.M. (2004). A review of approaches for classifying benthic habitats and evaluating habitat quality. Journal of Environmental Management, 73, 165e181.

Dunham, R.J. (1962). Classification of carbonate rocks according to depositional texture In: Ham, W. E. (Ed.), Classification of Carbonate Rocks. American Association of Petroleum Geologists, Memoir, 1, pp. 108–121.

Folk, R.L. (1954) The distinction between grain size and mineral composition in sedimentary-rock nomenclature. Journal of Geology, 62, 344-359.

Freeman, S.M., & Rogers, S.I. (2003). A new analytical approach to the characterisation of macro-epibenthic habitats: linking species to the environment. Estuarine, Coastal and Shelf Science 56, 749e764.

Gischler, E., & Lomando, A. J. (1999). Recent sedimentary facies of isolated carbonate platforms, Belize–Yucatan system, Central America. Journal of Sedimentary Research, 69, 747–763.

Gordon, L.A., Susanto, D.R., & Vranes, K. (2003). Cool Indonesian throughflow as a consequence of restricted surface layer flow. Nature, 425, 824–828.

Green, E.P., Mumby, P.J., & Edwards, A.J. (2000). Remote Sensing Handbook for Tropical Coastal Management Sourcebooks, 3. UNESCO, Paris (316 pp. and plates).

Harris, P.M., & Vlaswinkel, B. (2008). Modern isolated carbonate platforms: templates for quantifying facies attributes of hydrocarbon reservoirs. In: Lukasik, J., Simo, T. (Eds.), Controls on Carbonate Platform and Reef Development. SEPM Special Publication, 89, pp. 323–341.

Harris, P. M., Ellis, J., & Purkis, S. (2010). Delineating and Quantifying Depositional Facies Patterns in Modern Carbonate Sand Deposits on Great Bahama Bank (SEPM Short Course Notes No. 54 p, paper p. 1-51, Appendix p. 1-31, and 2 DVDs).

Hopley, D., & Partain, B. (1986). The structure and development of fringing reefs of the Great Barrier Reef Province, in: Baldwin, C. L., (Ed.), Fringing Reef Workshop: Science, Industry and Management. Great Barrier Reef Marine Park Authority, Townsville, pp. 13–33.

Hopley, D., Smithers, S.G., & Parnell, K.E. (2007). The geomorphology of the Great Barrier Reef: development, diversity and change. Cambridge University Press, New York.

Joyce, K.E., & Phinn, S.R. (2001). Optimal spatial resolution for coral reef mapping. Proceedings of the International Geoscience and Remote Sensing Symposium 2, 619–621.

Kaczmarek, S. E., Hicks, M. K., Fullmer, S. M., Steffen, K.L., & Bachtel, S. L. (2010). Mapping facies distributions on modern carbonate platforms through integration of multispectral Landsat data, statistics-based unsupervised classifications, and surface sediment data. American Association of Petroleum Geologists Bulletin, 94, 1581–1606.

Kennedy, D.M., & Woodroffe, C.D. (2002). Fringing reef growth and morphology: a review. Earth Science Review, 57, 255–277.

Kordi, M.N., & O’Leary, M. (2016). A spatial approach to improve coastal bioregion management of the north Western Australia. Ocean & Coastal Management, 127, 26-42.

Kuenen, Ph.H. (1933). Geology of coral reefs. The Snellius Expedition in the eastern part of the Netherlands East Indies 1929-1930. Vol. V, Geological Results, part 2. Kemink En Zoon N.V., Utrecht.

Kutser, T., Miller, I., & Jupp, D.L.B. (2006). Mapping coral reef benthic substrates using hyperspectral space-borne images and spectral libraries. Estuarine. Coastal and Shelf Science, 70(3), 449-460.

Luczkovich, J.J., Wagner, T.W., Michalek, J.L. & Stoffle, R.W. (1993). Discrimination of coral reefs, seagrass meadows, and sand bottom types from space: a Dominican Republic case study. Photogrammetric Engineering and Remote Sensing, 59(3), 385-389.

Lyzenga, D.R. (1981). Remote sensing of bottom reflectance and water attenuation parameters in shallow water using aircraft and Landsat data. International Journal of Remote Sensing, 2, 71–82.

Madden, R.H.C., Wilson, M.E.J., & O’Shea, M. (2013). Modern fringing reef carbonates from equatorial SE Asia: An integrated environmental, sediment and satellite characterisation study. Marine Geology, 344, 163–185.

Maedar, J., Narumalani, S., Rundquist, D.C., Perk, R.L., Schalles, J., Hutchins, K., & Keck, J. (2002). Classifying and mapping general coral-reef structure using IKONOS data. Photogrammetric Engineering and Remote Sensing, 68(12), 1297-1305.

Mazzullo, J., Graham, A. G., & Braunstein, C. (1988). Handbook for Shipboard Sedimentologists. Ocean Drilling Program Technical Note No. 8.

Montaggioni, L.F. (2005). History of Indo-Pacific coral reef systems since the last glaciation: development patterns and controlling factors. Earth Sci Rev, 71:1–75.

Mumby, P.J., Green, E.P., Clark, C.D., & Edwards, A.J. (1998). Digital analysis of multispectral airborne imagery of coral reefs. Coral Reefs, 17, 59–69.

Nurlidiasari, M. (2004). The application of Quickbird and Multi-temporal Landsat TM data for coral reef habitat mapping. Case Study: Derawan Island, East Kalimantan, Indonesia. International Institute for Geo-Information Science and Earth Observation, Enschede, The Netheralnds.

Purkis, S.J., & Pasterkamp, R. (2004). Integrating in situ reef-top reflectance spectra with Landsat TM imagery to aid shallow-tropical benthic habitat mapping. Coral Reefs, 23, 5–20.

Purkis, S.J., Riegl, B.M., & Andréfouët, S. (2005). Remote sensing of geomorphology and facies on a modern carbonate ramp (Arabian Gulf, Dubai, U.A.E.). Journal of Sedimentary Research 75, 861–876.

Purkis, S.J., Harris, P.M., & Ellis, J. (2012). Patterns of sedimentation in the contemporary Red Sea as an analog for ancient carbonates in rift settings. Journal of Sedimentary Research, 82(11), 859–870.

Rankey, E.C. (2002). Spatial patterns of sediment accumulation on a Holocene carbonate tidal flat, northwest Andros Island, Bahamas. Journal of Sedimentary Research, 72(5), 591–601.

Riegl, B.M., Halfar, J., Purkis, S.J., & Godinez-Ort, L. (2007). Sedimentary facies of the Eastern Pacific’s northernmost reef-like setting (Cabo Pulmo, Mexico). Marine Geology, 236, 61–77.

Sanderson, P.G. (2001). The Application of Satellite Remote Sensing to Coastal Management in Singapore. AMBIO: A Journal of the Human Environment, 30(1), 43-48.

Sidarto., Santosa, S., & Hermanto, B. (1993). Geological map of the Karimunjawa sheet, Jawa. Geological Research Centre, Bandung, Indonesia.

Solihuddin, T., Utami, A.D., Salim, H.L., & Prihantono, J. (2019). Sedimentary Environment of A Modern Carbonate Platform of Karimunjawa Islands, Central Java. Indonesian Journal on Geoscience, 6(1), 57-72.

Tomascik, T., Mah, A.J., Nontji, A., & Moosa, M.K. (1997). The ecology of Indonesian seas. Part 2, Periplus Editions.

Universitas Diponegoro, (1994). Pengelolaan terumbu karang di Kepulauan Karimunjawa, Kabupaten Dati II Jepara, Jawa Tengah: laporan akhir kegiatan penelitian perguruan tinggi. Semarang: Pusat Penelitian Energi dan Sumberdaya Alam, Lembaga Penelitian Universitas Diponegoro.

Veron, J.E.N. (2000). Corals of the world. Australian Institute of Marine Science 1-3, 1,382 pp.

Wyrtki, K. (1961). Physical Oceanography of the Southeast Asian Waters. Naga Report Vol. 2. Scripps Institution of Oceanography, La Jolla, California.

Zainal, A.J.M., Dalby, D.H., & Robinson, I.S. (1993). Monitoring marine ecological changes on the east coast of Bahrain with Landsat TM. Photogrammetric Engineering and Remote Sensing, 59(3), 415–421.