The Movement of Plastic Marine Debris in Indonesian Seas using A Trajectory Model

Engki Andri Kisnarti, Nining Sari Ningsih, Mutiara R. Putri, Nani Hendiarti

Abstract

There are many studies on ocean currents transporting plastic marine debris using hydrodynamic models and trajectories that have been carried out. However, it is still constrained to be applied in Indonesian waters. Therefore, this research aims to obtain the movement patterns of plastic marine debris, influenced by the dynamics of currents in Indonesian waters using hydrodynamic and trajectory models. The methodology used in this research is to use the HAMburg Shelf Ocean Model (HAMSOM) numerical model and the trajectory model. Plastic marine debris is assumed to be conservative particles at sea level with a macro size (2.5 cm-1 m). The particles are released in 6 coastal cities (Manado, Balikpapan, Makassar, DKI Jakarta, Semarang, and Denpasar) at the month and stop at the end month (January, April, July, October). The results showed that particles originating from 6 coastal cities moved along the current to the surrounding areas only, across islands within the Indonesian territory, and even left Indonesian territory.

Keywords

plastic marine debris; current; the trajectory model

Full Text:

PDF

References

Anwar, I.P., Putri, M.R., & Setiawan, A. (2017). Variasi transpor volume dan variabilitas arus laut di Selat Karimata dan Gaspar tahun 2010-2014 berdasarkan model numerik. Jurnal Ilmu dan Teknologi Kelautan Tropis, 9(2), 771-782. http://dx.doi.org/ 10.29244/jitkt.v9i2.19309.

Anwar, I.P., Putri, M.R., & Setiawan, A. (2018). Ocean numerical model experiment on estimating the variation of volume and heat transport in Karimata Strait. IOP Conference Series Earth and Environmental Science, 162(1):012001. https://doi.org/10.1088/1755-1315/162/1/012001.

Backhaus, J.O. (1983). A semi-implicit scheme for the shallow water equations for application to shelf sea modelling. Continental Shelf Research, 2(4), 243–254.

Backhaus, J.O. (1985). A three-dimensional model for the simulation of shelf sea dynamics, Deutsche Hydrographische Zeitschrift.

Bowman, K.P., Lin, J.C., Stohl, A., Draxler, R., Konopka P., Andrews A., & Brunner, D. (2013). Input Data Requirements for Lagrangian Trajectory Models. Bulletin of the American Meteorological Society, 94(7), 1051-1058. DOI:10.1175/BAMS-D-12-00076.1

Coe, J.M., & Rogers, D.B. (1997). Marine debris: sources, impacts, and solutions, Springer-Verlag New York, Inc.

Dobler, D., Martinez, E., Rahmania, R., Gautama, B. G., Farhan, A. R., & Maes, C. (2021). Floating marine debris along Indonesia coasts: An atlas of strandings based on Lagrangian modelling, Institute of Research for Development: Project Monitoring and modelling the circulation of marine debris in Indonesia.

Egbert, G.D., & Erofeeva, S.Y. (2002). Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology, 19(2), 183-204.

Galgani, F., Fleet, D.M, van Franeker, J. A, Katsanevakis, S., Maes, T., Mouat, J., Oosterbaab, L., Poitou. I., Hanke G., Thompson, R., Amato, E., Birkun, A., & Janssen, C. (2010): Marine strategy framework directive task group 10 report marine litter directive, European Union, IFREMER dan ICES, https://doi.org/10.2788/86941.

Gordon, A.L., Giulivi, C.F., & Ilahude, A.G. (2003). Deep topographic barriers within the Indonesian seas. Deep Sea Research Part II: Topical Studies in Oceanography, 50(12–13), 2205-2228. https://doi.org/10.1016/S0967-0645(03)00053-5.

Gordon, A.L., Sprintall, J., van Aken, H.M., Susanto, R.D., Wijffels, S.E., Molcard, R., Ffield, A., Pranowo, W.A., & Wirasantosa, S. (2010). The Indonesian throughflow during 2004-2006 as observed by the INSTANT program. Dynamics of Atmospheres and Oceans, 50(2), 115-128, https://doi.org/10.1016/j.dynatmoce.2009.12.002.

Handyman, D.I.W., Purba, N.P., Pranowo, W.S., Harahap, S.A., Dante, I.F., & Yuliadi, L.P.S. (2019). Microplastics patch based on hydrodynamic modeling in the north Indramayu, Java Sea. Polish Journal of Environmental Studies, 28(1), 135-142. https://doi.org/10.15244/pjoes/81704.

Huang, B., Thorne, P.W., Banzon, V.F., Boyer, T., Chepurin, G., Lawrimore, J.H., Menne, M. J., Smith, T. M., Vose, R.S., & Zhang, H (2017). Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrade, Validations, and Intercomparisons. J. Climate, 30(20), 8179-8205 https://doi.org/10.1175/JCLI-D-16-0836.1

Jambeck, J.R., Geyer, R., Wilcox, C., Siegler, T.R., Perryman, M., Andrady, A., Narayan, R., & Law, K.L. (2015). Plastic waste inputs from land into the ocean. Science, 347(6223), 768-771.

Jarvis, A., Reuter, H.I., Nelson, A., & Guevara, E. (2008). Hole-filled seamless SRTM data V4. International Centre for Tropical Agriculture (CIAT). http://srtm.csi.cgiar.org

Jasmin, H.H., Purba, N.P., Harahap, S.A., Pranowo, W.S., Syamsudin, M.L., & Faizal, I. (2019). The model of macro debris transport before reclamation and in existing condition in Jakarta Bay. Jurnal Ilmu dan Teknologi Kelautan Tropis. 11(1), 131-140. http://dx.doi.org/10.29244/jitkt.v11i1.24777.

Jasmin, H.H., Purba, N.P., Pranowo, W.S., Pribadi, T.D.K., Syamsudin, M.L., & Ihsan, Y.N. (2020). Marine macro debris transport based on hydrodynamic model before and after reclamation in Jakarta Bay, Indonesia. Malaysia Journal of Applied Sciences, 5(2), 100-111. http://dx.doi.org/10.37231/myjas.2020.5.2.241.

Kementrian Koordinator Bidang Kemaritiman, World Bank Group, and Embasy of Denmark. (2017, in Indonesian). A quick assessment of Indonesia’s marine debris hotspots: Balikpapan city report

Kementrian Koordinator Bidang Kemaritiman, World Bank Group, & Embasy of Denmark. (2017, in Indonesian). A quick assessment of Indonesia’s marine debris hotspots: Batam city report.

Kementrian Koordinator Bidang Kemaritiman, World Bank Group, and Embasy of Denmark. (2017, in Indonesian). A quick assessment of Indonesia’s marine debris hotspots: Denpasar city report.

Kementrian Koordinator Bidang Kemaritiman, World Bank Group, & Embasy of Denmark. (2017, in Indonesian). Kajian cepat hotspot sampah laut Indonesia: Laporan kota Jakarta.

Kementrian Koordinator Bidang Kemaritiman, World Bank Group, & Embasy of Denmark. (2017, in Indonesian). A quick assessment of Indonesia’s marine debris hotspots: Makassar city report.

Kementrian Koordinator Bidang Kemaritiman, World Bank Group, & Embasy of Denmark. (2017, in Indonesian). A quick assessment of Indonesia’s marine debris hotspots: Manado city report.

Kementrian Koordinator Bidang Kemaritiman, World Bank Group, & Embasy of Denmark. (2017, in Indonesian). A quick assessment of Indonesia’s marine debris hotspots: Semarang city report.

Krelling, A.P., Souza, M.M., Williams, A.T., & Turra, A. (2017). Transboundary movement of marine litter in an estuarine gradient: Evaluating sources and sinks using hydrodynamic modelling and ground truthing estimates. Marine Pollution Bulletin, 119(1). DOI:10.1016/j.marpolbul.2017.03.034.

Lippiat, S., Opfer, S., & Arthur, C. (2013). Marine debris monitoring and assessment: Recommendations for monitoring debris trends in the marine environment, NOAA Marine Debris Division.

Locarnini, R.A., Mishonov, A.V., Antonov, J.I., Boyer, T. P., Garcia, H. E., Baranova, O. K., Zweng, M. M., Paver, C. R., Reagan, J. R., Johnson, D. R., Hamilton, M., & Seidov, D. (2013). World Ocean Atlas 2013, Volume 1: Temperature. S. Levitus, Ed., A. Mishonov Technical Ed.; NOAA Atlas NESDIS 73, 40 pp.

Law of the Republic of Indonesia number 6 year 1996 concerning Indonesian Waters.

Mayer, B. (1995). A three-dimensional numerical suspended particulate matter transport model with application to the German Bight. Disertasi Program Doktor, Universität Hamburg.

Mayer, B., Damm, P.E., Pohlmann, T., & Rizal, S. (2010). What is driving the ITF? An illumination of the Indonesian throughflow with a numerical nested model system. Dynamics of Atmospheres and Oceans, 50(2), 301-312, https://doi.org/10.1016/j.dynatmoce.2010.03.002.

Mustikasari, E., Dewi, L.C., Heriati, A., & Pranowo, W.S. (2014). Pemodelan pola arus barotropik musiman 3 dimensi (3D) untuk mensimulasikan fenomena upwelling di perairan Indonesia. Jurnal Segara, 11(1), 25-35.

NOAA. (2015). Turning the tide on trash. A learning guide on marine debris.

Purmono, P., Monang, S., Alam, T.M., & Parnowo, W.S. (2018). Rezim horisontal dan vertikal arus monsun di Selat Sunda. Jurnal Hidropolar, 4(1), 25-30. https://doi.org/10.37875/hidropilar.v4i1.93

Putri, M.R. (2005). Study of ocean climate variability (1959-2002) in the Eastern Indian Ocean, Java Sea, and Sunda Strait using the hamburg shelf ocean model, Disertasi Program Doktor, Universitat Hamburg.

Putri, M.R., Setiawan, A., Sari, T., Mayer, B., & Pohlmann, T. (2017). Trajectory model for identification of oil spill around the coast of Pari Island, Seribu Islands, North Jakarta. Jurnal Ilmu dan Teknologi Kelautan Tropis, 9(2), 657-664. https://doi.org/10.29244/jitkt.v9i2.19299.

Sprintall, J., & Revelard, A. (2014). The Indonesian throughflow response to Indo-Pacific climate variability. Journal of Geophysical Research: Oceans, 119(2),1161-1174. DOI:10.1002/2013JC009533

Thompson, R. C., Moore, C. J., Saal, F. S., and Swan, S. H. (2009). Plastics, the environment, and human health: current consensus and future trends. Philosophical Transactions of the Royal Society B, 364(1526), 2153-66, https://doi.org/10.1098/rstb.2009.0053.

United Nations Convention on the Law of the Sea. (1982). A Commentary - Volume VI.

Wyrtki, K. (1987). Indonesian through flow and the associated pressure gradient. Journal of Geophysical Research, 92(C12), 12941, https://doi.org/10.1029/ JC092iC12p12941.

Zweng, M.M., Reagan, J.R., Antonov, J.I., Locarnini, R. A., Mishonov, A.V., Boyer, T.P., Garcia, H.E., Baranova, O.K., Johnson, D.R., Seidov, D., & Biddle, M.M. (2013). World Ocean Atlas 2013, Volume 2: Salinity. S. Levitus, Ed., A. Mishonov Technical Ed.; NOAA Atlas NESDIS 74, 39 pp.