IoT Sea Level Monitoring: A Study on the Development and Field Testing

Hollanda Arief Kusuma, Muhammad Aris Akbar, Tonny Suhendra

Abstract

The measurement of sea level is important in oceanography, as it provides critical information about the ocean environment, including tides, currents, and water temperature. This study aimed to develop an IoT-based sea level monitoring device that can accurately measure sea level and transmit the data in real time. The device consisted of various components: an ESP32 Microcontroller, a GSM Module, an MS5803-14BA sensor, and a battery. The components were assembled on a PCB board and placed inside a waterproof box to protect the electronics from the ocean environment. The field test was conducted for 17 hours at the Tanjungpinang Class 1 Navigation Office Port, and the data was monitored through the Ubidots platform. The results showed that the device accurately measured sea level, with an RMSE value of 0.69 cm and an accuracy rate of 99.47%. However, the field test also revealed data transmission issues, with 18.81% of the data not being sent to the server. This low data transmission rate may have been due to low RSSI levels and issues with operator signal quality. Further research is needed to understand the reasons behind these data losses and to improve the device's overall performance. This study demonstrated the feasibility of using an IoT-based sea level monitoring device to accurately measure sea level and transmit the data in real time. It provides valuable information for further development and improvement of sea level monitoring systems.

Keywords

IoT; Sea Level Monitoring; MS5803-14BA Sensor; Sensor Accuracy; RMSE; Data Transmission

Full Text:

PDF

References

Asenov, S.M., Tokmakov, D.M., 2020. Power Optimization of LoRaWAN Wireless End Sensor Node. 2020 29th Int. Sci. Conf. Electron. 2020 - Proc. 10–13. https://doi.org/10.1109/ET50336.2020.9238204

Beddows, P.A., Mallon, E.K., 2018. Cave pearl data logger: A flexible arduino-based logging platform for long-term monitoring in harsh environments. Sensors (Switzerland) 18. https://doi.org/10.3390/s18020530

Briliant, E.H., Kurniawan, M.H.S., 2019. Perbandingan Regresi Linier Berganda dan Regresi Buckley- James Pada Analisis Survival Data Tersensor Kanan. Proc. 1st STEEEM 2019 1, 1–19.

Chai, T., Draxler, R.R., 2014. Root mean square error (RMSE) or mean absolute error (MAE)? -Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 7, 1247–1250. https://doi.org/10.5194/gmd-7-1247-2014

Cherqui, F., James, R., Poelsma, P., Burns, M.J., Szota, C., Fletcher, T., Bertrand-Krajewski, J.L., 2020. A platform and protocol to standardise the test and selection low-cost sensors for water level monitoring. H2Open J. 3, 437–456. https://doi.org/10.2166/h2oj.2020.050

Djajadi, A., Wijanarko, M., 2016. Ambient Environmental Quality Monitoring. Internetnetworking Indones. J. 8, 41–47.

Egistian, F., 2021. Rancang Bangun Pasang Surut Air Laut Secara Real-Time Berbasis Sensor Tekanan Dan GSM SIM900A. [Thesis] Universitas Maritim Raja Ali Haji.

Hasniah, Wahyuningsih, S., Yuniarti, D., 2017. Penerapan Metode ARIMA Ensembel pada Peramalan (Studi Kasus: Inflasi di Indonesia). EKSPONENSIAL 7, 85–94.

Intergovernmental Oceanographic Commission, 2006. Manual on Sea Level Measurement and Interpretation, Volume IV: An Update to 2006, IOC Manuals and Guides No.14, Vol. IV ; JCOMM Technical Report No. 31.

Kanakaraja, P., Syam Sundar, P., Vaishnavi, N., Gopal Krishna Reddy, S., Sai Manikanta, G., 2020. IoT enabled advanced forest fire detecting and monitoring on Ubidots platform. Mater. Today Proc. 46, 3907–3914. https://doi.org/10.1016/j.matpr.2021.02.343

Kombo, O.H., Kumaran, S., Bovim, A., 2021. Design and Application of a Low-Cost, Low- Power, LoRa-GSM, IoT Enabled System for Monitoring of Groundwater Resources with Energy Harvesting Integration. IEEE Access 9, 128417–128433. https://doi.org/10.1109/

ACCESS.2021.3112519

Kusuma, H.A., Lubis, M.Z., Oktaviani, N., Setyono, D.E.D., 2021a. Tides Measurement and Tidal Analysis at Jakarta Bay. J. Appl. Geospatial Inf. 5, 494–501. https://doi.org/10.30871/jagi.v5i2.2779

Kusuma, H.A., Purbakawaca, R., Pamungkas, I.R., Fikry, L.N., Maulizar, S.S., 2021b. Design and Implementation of IoT-Based Water Pipe Pressure Monitoring Instrument. J. Elektron. dan Telekomun. 21, 41–47. https://doi.org/10.14203/jet.v21.41-44

Laney, S.R., 2017. A General-Purpose Microcontroller-Based Framework for Integrating Oceanographic Sensors, Instruments, and Peripherals. J. Atmos. Ocean. Technol. 34, 415–427. https://doi.org/10.1175/JTECH-D-16-0069.1

Lyman, T.P., Elsmore, K., Gaylord, B., Byrnes, J.E.K., Miller, L.P., 2020. Open Wave Height Logger: An open source pressure sensor data logger for wave measurement. Limnol. Oceanogr. Methods 18, 335–345. https://doi.org/10.1002/lom3.10370

Marzuarman, M., Faizi, M.N., Stephan, S., 2020. Rancang Bangun ROV (Remotely Operated Vechile) Untuk Mengukur Kedalaman Air Berbasis Sensor MS5803-14BA. Elkha 12, 19. https://doi.org/10.26418/elkha.v12i1.39833

Missa, I.K., Lapono, L.A.S., Wahid, A., 2018. Rancang Bangun Alat Pasang Surut Air Laut Berbasis Arduino Uno Dengan Menggunakan Sensor Ultrasonik Hc-Sr04. J. Fis. Fis. Sains Dan Apl. 3, 102–105. https://doi.org/

35508/fisa.v3i2.609

Mohammed, N.S., Selman, N.H., 2020. Home Energy Management and Monitoring Using Ubidots Platform. Al-Furat J. Innov. Electron. Comput. Eng. 1, 14. https://doi.org/10.46649/150920-03

Plauska, I., Liutkevičius, A., Janavičiūtė, A., 2022. Performance Evaluation of C/C++, MicroPython, Rust and TinyGo Programming Languages on ESP32 Microcontroller. Electronics 12, 143. https://doi.org/10.3390/

electronics12010143

Prima, A.C., 2018. Rancang Bangun Underwater Remotely Operated Vehicle Untuk Memantau Nilai Ph Pada Badan Air. [Thesis] Institut Teknologi Sepuluh Nopember.

Prochazka, V., Kubalik, P., Kubatova, H., 2020. Low Power Wireless Data Transfer for Internet of Things: GSM Network Measuring Results, in: 2020 9th Mediterranean Conference on Embedded Computing (MECO). IEEE, pp. 1–5. https://doi.org/10.1109/MECO49872.2020.9134348

Purba, M.J., Manurung, S., 2019. Analysis of 4g Internet Technology Quality in Medan City with Mobile Communication System. J. Phys. Conf. Ser. 1361. https://doi.org/10.1088/1742-6596/1361/1/012030

Purbakawaca, R., Yuwono, A.S., Subrata, I.D.M., Supandi, Alatas, H., 2022. Ambient Air Monitoring System with Adaptive Performance Stability. IEEE Access 10, 1–1. https://doi.org/10.1109/access.2022.3222329

Putra, A., 2015. Sistem Monitoring Pengukuran Pasang Surut Air Laut Berbasis SMS Menggunakan Sensor Ultrasonik dan Komputer Mini. J. Sustain. J. Has. Penelit. dan Ind. Terap. 4.

Putra, A.T., Risfendra, R., 2021. Use of the Ubidots Application for a Control and Monitoring System in an Arduino UNO-Based Sugar Warehouse. JTEIN J. Tek. Elektro Indones. 2, 40–48. https://doi.org/10.24036/jtein.v2i1.120

Refly, S., Kusuma, H.A, 2022. Analisis Konsumsi dan Fluktuasi Arus dan Daya pada Mikrokontroler Menggunakan Sensor INA219. J. Sustain. J. Has. Penelit. dan Ind. Terap. 11, 44–48. https://doi.org/10.31629/sustainable.

v11i1.4610

Saragih, I.J.A., Rumahorbo, I., Yudistira, R., Sucahyono, D., 2020. Prediksi Curah Hujan Bulanan Di Deli Serdang Menggunakan Persamaan Regresi Dengan Prediktor Data Suhu Dan Kelembapan Udara. J. Meteorol. Klimatologi dan Geofis. 7, 6–14. https://doi.org/10.36754/jmkg.v7i2.192

Shanghai SIMCom Wireless Solutions, 2011. SIM900 TCPIP Application. Shanghai.

Suprayugi, B.W., Primananda, R., Bhawiyuga, A., 2019. Analisis Kinerja Protokol Routing Fisheye State Routing (FSR) dan Ad- Hoc On Demand Multipath Distance Vector (AOMDV) pada Mobile Ad- Hoc Network. Pengemb. Teknol. Inf. dan Ilmu Komputer. 3, 3797–3806.

Tiyas, P.K., Widyartono, M., 2019. Pengaruh Efek Suhu Terhadap Kinerja Panel Surya. J. Tek. ELEKTRO 9, 1–6. https://doi.org/10.26740/jte.v9n1.p%25p

Wijaya, A.D., Mudin, Y., Farhamsah, D., 2016. Rancang Bangun Alat Ukur Gelombang Pasang Surut Jarak Jauh Dengan Memanfaatkan Short Message Services (SMS). Gravitasi 15, 1–9.