MODELING TIDAL CURRENT OF BANTEN BAY DURING TRANSITIONAL MONSOONS 2015-2016

Ahmad Bayhaqi, Ulung Jantama Wisha, Dewi Surinati

Abstract

Hydrodynamic condition of Java sea as a part of Indian-Pacific throughflow system influenced by monsoon will affect the condition of Banten Bay such as tidal current. Bordered by Java Sea makes Banten Bay preoccupied with fisheries and shipping activities, so the information regarding current pattern that is tidal current is very necessary. This study aims to simulate the tidal current pattern using flow model fm as a numerical approach. Two-dimensional hydrodynamic model was employed to perform the simulation of tidal current. Model was validated by using current and tidal observation data which was taken on September 2015 and April 2016. The result shows that the current moves southwestern toward the land during high neap and high spring tidal conditions ranged 0 - 0.142 m/s at the first transitional monsoon and 0 - 0.153 m/s at the second transitional monsoon respectively. During low spring tidal condition for both transitional monsoons, the current flowed northwestward on west side and northeastward on east side within the bay ranged 0 - 0.137 m/s and 0 - 0.127 m/s respectively. The hydrodynamic conditions of Banten Bay are slightly different between 2 transitional seasons, especially for the current speed and direction. Those conditions induce a different transport mechanism, resulting in unstable accretion and abrasion along Banten Bay coast.

Keywords

Tidal current modeling, Banten Bay, transitional monsoons

Full Text:

PDF

References

Antony, C. & Unnikrishnan, A.S. (2013). Observed characteristics of tide-surge interaction along the east coast of India and the head of Bay of Bengal. Estuarine, Coastal and Shelf Science, 131, 6-11. Doi: 10.1016/j.ecss.2013.08.004.

Boon, J. D. (2013). Secrets of the tide: tide and tidal current analysis and predictions, storm surges and sea level trends. Elsevier.

Carter, G. S., & Merrifield, M. A. (2007). Open boundary conditions for regional tidal simulations. Ocean Modelling, 18(3-4), 194-209. Doi: 10.1016/j.ocemod.2007.04.003.

Douglas, R.M. (2001). Physical Oceanography. Dept of Geophysical Science. Univ of Chigago, Illinois.

Fang, G., Wang, Y., Wei, Z., Fang, Y., Qiao, F. & Hu, X. (2009). Interocean circulation and heat and freshwater budgets of the South China Sea based on a numerical model. Dynamics of Atmospheres and Oceans, 47(1), 55-72. Doi: 10.1016/j.dynatmoce.2008.09.003.

Fang, G., Susanto, R.D., Wirasantosa, S., Qiao, F., Supangat, A., Fan, B., Wei, Z., Sulistyo, B., and Li, S. (2010). Volume, Heat and Freshwater Transport from The South China Sea to Indonesian Seas in the Boreal Winter of 2007-2008. J. Geophys. Res, 115. C12020. Doi: 10.1029/2010JC006225.

Ffield, A. & Gordon, A.L. (1996). Tidal mixing signatures in the Indonesian Seas. Journal of Physical Oceanography, 26(9), 1924-1937. Doi: 10.1175/1520-0485(1996)026.

Garrett, C. & Kunze, E. (2007). Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech., 39, 57-87. Doi: 10.1146/annurev.fluid.39.050905.110227.

Gordon, A.L., Susanto, R. D. & Vranes, K. (2003). Cool Indonesian Throughflow as A Consequence of Restricted Surface Layers Flow. Nature, 425, 824-828. Doi: 10.1038/nature02038.

Gordon, A.L., Sprintall, J., Van Aken, H.M., Susanto, D., Wijffels, S., Molcard, R., Ffield, A., Pranowo, W., & Wirasantosa, S. (2010). The Indonesian throughflow during 2004–2006 as observed by the INSTANT program. Dynamics of Atmospheres and Oceans, 50(2), 115-128. Doi: 10.1016/j.dynatmoce.2009.12.002.

Gordon, A.L., Huber, B.A., Metzger, E.J., Susanto, R.D., Hurlburt, H.E. & Adi, T.R. (2012). South China Sea throughflow impact on the Indonesian throughflow. Geophysical Research Letters, 39, L11602. Doi: 10.1029/2012L052021.

Hendrawan, I.G., & Ardana, I.K. (2010). Numerical calculation of phosphate transport in Benoa Bay, Bali. International Journal of Remote Sensing and Earth Sciences (IJReSES), 6(1). Doi: https://doi.org/10.1007/s13131-014-0434-5.

Hoekstra, P., Lindeboom, H., Bak, R., Bergh, G.V.D., Tiwi, D.A., Douven, W., Heun, J., Hobma, T., Hoitink, T., Kiswara, W., Meesters, E., Noor, Y., Sukmantalya, N., Nuraini, S. & Weering, T.V. (2002). Teluk Banten Research Programme: an integrated coastal zone management Study. Staple (Ed.) Scientific programme Indonesia - Netherlands Proceedings of a workshop held on February 12th, 2002. Bandung. Indonesia., pp: 59-70.

Holt, J.T., Allen, J.I., Proctor, R. & Gilbert, F. (2005). Error quantification of a high-resolution coupled hydrodynamic–ecosystem coastal–ocean model: part 1 model overview and assessment of the hydrodynamics. Journal of Marine Systems, 57(1), 167-188. Doi: 10.1016/j.jmarsys.2005.04.008.

King, M.A., Padman, L., Nicholls, K.W., Clarke, P.J., Gudmundsson, H., Kulessa, B. & Shepherd, A. (2011), Ocean tides in the Weddell Sea: new observations on the Filchner-Ronne and Larsen C ice shelves and model validation, J. Geophys. Res. (Oceans), 116(C06006), Doi: 10.1029/2011JC006949.

Kulhandjian, H. & Melodia, T. (2014). Modeling underwater acoustic channels in short-range shallow water environments. In Proceedings of the International Conference on Underwater Networks & Systems (p. 26). ACM.

Kvale, E.P. (2006). The origin of neap–spring tidal cycles. Marine Geology, 235(1), 5-18. Doi: 10.1016/j.margeo.2006.10.001.

Lazure, P., Garnier, V., Dumas, F., Herry, C. & Chifflet, M. (2009). Development of a hydrodynamic model of the Bay of Biscay. Validation of hydrology. Continental Shelf Research, 29(8), 985-997. Doi: 10.1016/j.csr.2008.12.017.

Li, M. & Zhong, L. (2009). Flood–ebb and spring–neap variations of mixing, stratification and circulation in Chesapeake Bay. Continental Shelf Research, 29(1), 4-14. Doi: 10.1016/j.csr.2007.06.012

Lukas, R., Yamagata, T. & McCreary, J.P. (1996). Pacific low-latitude western boundary currents and the Indonesian throughflow. Journal of Geophysical Research: Oceans, 101(C5), 12209-12216. Doi: 10.1029/96jc01204.

Mahardika, R.W., Ismanto, A. & Purwanto, P. (2015). Studi Perbandingan Simulasi Model Flow Model Fm Dan Adcirc Terhadap Pola Arus Pasut Perairan Teluk Lembar Lombok. Journal of Oceanography, 4(1), 206-214. [in bahasa].

Masoud, M., Babak, B. & vahid, C. (2012). Least Square Analysis of Noise-Free Tides Using Energy Conservation and Relative Concentration of Periods Criteria. Journal of the Persian Gulf (Marine Science), 3(8), 12-23.

Noor, Y.R. & Hasudungan, F. (2002). Observation of re-breeding of Black-headed Ibis (Threskiornis melanocephalus) in Pulau Dua, Serang, Journal of Indonesian Ornithological Society. (In Press)

Qu, T., Du, Y. & Sasaki, H. (2006). South China Sea throughflow: A heat and freshwater conveyor. Geophysical Research Letters, 33(23), L23617. Doi: 10.1029/2006gl028350.

Park, J., Heitsenrether, R., & Sweet, W.V. (2014). Water Level and Wave Height Estimates at NOAA Tide Stations from Acoustic and Microwave Sensors. NOAA Technical Report NOS CO-OPS 075. Silver Spring, Maryland, June 2014.

Poulain, P.M. (2013). Tidal currents in the Adriatic as measured by surface drifters. Journal of Geophysical Research: Oceans, 118(3), 1434-1444. Doi: 10.1002/jgrc.20147.

Rahmawan, G.A., Husrin, S. & Prihantono, J. (2017). Bathymetry Changes Analysis in Serang District Waters Caused by Seabed Sand Exploitation. Jurnal Ilmu dan Teknologi Kelautan Tropis, 9(1), 45-55. Doi: 10.28930/jitkt.v9i1.17916. [in Bahasa].

Siregar, S.N., Sari, L.P., Purba, N.P., Pranowo, W.S. & Syamsuddin, M.L. (2017). Pertukaran massa air di Laut Jawa terhadap periodisitas monsun dan Arlindo pada tahun 2015. DEPIK Jurnal Ilmu-Ilmu Perairan, Pesisir dan Perikanan, 6(1), 44-59. Doi: 10.13170/depik.6.1.5523. [In Bahasa].

Spaulding, M.L. & Mendelsohn, D.L. (1999). WQMAP: An integrated three-dimensional hydrodynamic and water quality model system for estuarine and coastal applications. Marine Technology Society Journal, 33(3), 38-54. Doi: 10.4031/mtsj.33.3.6.

Stewart, R.H. (2006). Introduction to Physical Oceanography. Dept of Oceanography. Texas A&M

Susanto, R.D., Ffield, A., Gordon, A.L. & Adi, T.R. (2012). Variability of Indonesian throughflow within Makassar Strait, 2004–2009. Journal of Geophysical Research: Oceans, 117(C9). C09013. Doi: 10.1029/2012jc008096.

Susanto, R.D., Wei, Z., Adi, R.T., Fan, B., Li, S. & Fang, G. (2013). Observations of the Karimata Strait througflow from December 2007 to November 2008. Acta Oceanologica Sinica, 32(5), 1-6. Doi: 10.1007/s13131-013-0307-3.

Tozuka, T., Qu, T., Masumoto, Y. & Yamagata, T. (2009). Impacts of the South China Sea Throughflow on seasonal and interannual variations of the Indonesian Throughflow. Dynamics of Atmospheres and Oceans, 47(1), 73-85. Doi: 10.1016/j.dynatmoce.2008.09.001.

Van Rijn, L.C. (2011). Analytical and numerical analysis of tides and salinities in estuaries; part I: tidal wave propagation in convergent estuaries. Ocean Dynamics, 61(11), 1719-1741. Doi: 10.1007/s10236-011-0453-0.

Wessel, P. & Smith, W.H. (1996). A global, self-consistent, hierarchical, high-resolution shoreline database. Journal of Geophysical Research: Solid Earth, 101(B4), 8741-8743. Doi: 10.1029/96jb00104.

Wicaksana, S., Sofian, I. & Pranowo, W. (2015). Karakteristik Gelombang Signifikan Di Selat Karimata Dan Laut Jawa Berdasarkan Rerata Angin 9 Tahunan (2005-2013). Omni-Akuatika, 11(2):33-40. Doi: 10.20884/1.oa.2015.11.2.37.

Wisha, U.J., Husrin, S. & Prihantono, J. (2015). Hydrodynamics Banten Bay During Transitional Seasons (August-September). Ilmu Kelautan, 20(2). 101-112. Doi: 10.14710/ik.ijms.20.2.101-112. [in Bahasa].

Wisha, U.J., & Heriati, A. (2016). Bathymetry and Hydrodynamics in Pare Bay Waters During Transitional Seasons (September-October). Omni-Akuatika, 12(2). 1-10. Doi: 10.20884/1.oa.2016.12.2.98.

Wisha, U.J., Al Tanto, T., Pranowo, W. S. & Husrin, S. (2017). Current movement in Benoa Bay water, Bali, Indonesia: Pattern of tidal current changes simulated for the condition before, during, and after reclamation. Regional Studies in Marine Science. 18, 177-187. Doi: 10.1016/j.rsma.2017.10.006.

Zhao, D.H., Shen, H.W., Tabios III, G.Q., Lai, J.S. & Tan, W.Y. (1994). Finite-volume two-dimensional unsteady-flow model for river basins. Journal of Hydraulic Engineering, 120(7), 863-883. Doi: 10.1061/(asce)0733-9429(1994)120:7(863).